The reciprocal Dunford–Pettis property of order in projective tensor products
Commentationes Mathematicae Universitatis Carolinae (2019)
- Volume: 60, Issue: 3, page 351-360
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGhenciu, Ioana. "The reciprocal Dunford–Pettis property of order $p$ in projective tensor products." Commentationes Mathematicae Universitatis Carolinae 60.3 (2019): 351-360. <http://eudml.org/doc/294270>.
@article{Ghenciu2019,
abstract = {We investigate whether the projective tensor product of two Banach spaces $X$ and $Y$ has the reciprocal Dunford–Pettis property of order $p$, $1\le p<\infty $, when $X$ and $Y$ have the respective property.},
author = {Ghenciu, Ioana},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {reciprocal Dunford--Pettis property; spaces of compact operators},
language = {eng},
number = {3},
pages = {351-360},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The reciprocal Dunford–Pettis property of order $p$ in projective tensor products},
url = {http://eudml.org/doc/294270},
volume = {60},
year = {2019},
}
TY - JOUR
AU - Ghenciu, Ioana
TI - The reciprocal Dunford–Pettis property of order $p$ in projective tensor products
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2019
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 60
IS - 3
SP - 351
EP - 360
AB - We investigate whether the projective tensor product of two Banach spaces $X$ and $Y$ has the reciprocal Dunford–Pettis property of order $p$, $1\le p<\infty $, when $X$ and $Y$ have the respective property.
LA - eng
KW - reciprocal Dunford--Pettis property; spaces of compact operators
UR - http://eudml.org/doc/294270
ER -
References
top- Albiac F., Kalton N. J., Topics in Banach Space Theory, Graduate Texts in Mathematics, 233, Springer, New York, 2006. Zbl1094.46002MR2192298
- Bator E. M., Lewis P. W., 10.1002/mana.19921570109, Math. Nachr. 157 (1992), 99–103. Zbl0792.47021MR1233050DOI10.1002/mana.19921570109
- Bessaga C., Pełczyński A., 10.4064/sm-17-2-151-164, Studia Math. 17 (1958), 151–164. MR0115069DOI10.4064/sm-17-2-151-164
- Bourgain J., New classes of -spaces, Lecture Notes in Mathematics, 889, Springer, Berlin, 1981. MR0639014
- Castillo J. M., Sanchez F., Dunford–Pettis-like properties of continuous vector function spaces, Rev. Mat. Univ. Complut. Madrid 6 (1993), no. 1, 43–59. MR1245024
- Diestel J., A survey of results related to the Dunford–Pettis property, Proc. of the Conf. on Integration, Topology, and Geometry in Linear Spaces, Contemp. Math., 2, Amer. Math. Soc., Provicence, 1980, pages 15–60. MR0621850
- Diestel J., Sequences and Series in Banach Spaces, Graduate Texts in Mathematics, 92, Springer, New York, 1984. MR0737004
- Diestel J., Jarchow H., Tonge A., Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995. Zbl1139.47021MR1342297
- Diestel J., Uhl J. J. Jr., Vector Measures, Mathematical Surveys, 15, American Mathematical Society, Providence, 1977. Zbl0521.46035MR0453964
- Emmanuele G., A dual characterization of Banach spaces not containing , Bull. Polish Acad. Sci. Math. 34 (1986), no. 3–4, 155–160. MR0861172
- Emmanuele G., Dominated operators on and the , Collect. Math. 41 (1990), no. 1, 21–25. MR1134442
- Emmanuele G., 10.1017/S0305004100069632, Math. Proc. Cambridge Philos. Soc. 109 (1991), no. 1, 161–166. MR1075128DOI10.1017/S0305004100069632
- Emmanuele G., 10.1017/S0305004100075435, Math. Proc. Cambridge Philos. Soc. 111 (1992), no. 2, 331–335. MR1142753DOI10.1017/S0305004100075435
- Emmanuele G., Hensgen W., Property of Pelczyński in projective tensor products, Proc. Roy. Irish Acad. Sect. A 95 (1995), no. 2, 227–231. MR1660381
- Emmanuele G., John K., 10.1023/A:1022483919972, Czechoslovak Math. J. 47 (1997), no. 1, 19–31. Zbl0903.46006MR1435603DOI10.1023/A:1022483919972
- Ghenciu I., Property and the reciprocal Dunford–Pettis property in projective tensor products, Comment. Math. Univ. Carolin. 56 (2015), no. 3, 319–329. MR3390279
- Ghenciu I., 10.2989/16073606.2017.1402383, Quaest. Math. 41 (2018), no. 6, 811–828. MR3857131DOI10.2989/16073606.2017.1402383
- Ghenciu I., 10.1007/s10474-018-0836-5, Acta Math. Hungar. 155 (2018), 439–457. MR3831309DOI10.1007/s10474-018-0836-5
- Ghenciu I., Lewis P., 10.4064/cm106-2-11, Colloq. Math. 106 (2006), no. 2, 311–324. MR2283818DOI10.4064/cm106-2-11
- Ghenciu I., Lewis P., 10.4064/ba56-3-7, Bull. Pol. Acad. Sci. Math. 56 (2008), no. 3–4, 239–256. Zbl1167.46016MR2481977DOI10.4064/ba56-3-7
- Pełczyński A., Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648. Zbl0107.32504MR0149295
- Pełczyński A., 10.4064/sm-30-2-231-246, Studia Math. 30 (1968), 231–246. MR0232195DOI10.4064/sm-30-2-231-246
- Pełczyński A., Semadeni Z., 10.4064/sm-18-2-211-222, Studia Math. 18 (1959), 211–222. MR0107806DOI10.4064/sm-18-2-211-222
- Pitt H. R., 10.1112/jlms/s1-11.3.174, J. London Math. Soc. 11 (1936), no. 3, 174–180. Zbl0014.31201MR1574344DOI10.1112/jlms/s1-11.3.174
- Rosenthal H., 10.2307/2373824, Amer. J. Math. 99 (1977), no. 2, 362–378. MR0438113DOI10.2307/2373824
- Ryan R. A., Introduction to Tensor Products of Banach Spaces, Springer Monographs in Mathematics, Springer, London, 2002. Zbl1090.46001MR1888309
- Wojtaszczyk P., Banach Spaces for Analysts, Cambridge Studies in Advanced Mathematics, 25, Cambridge University Press, Cambridge, 1991. MR1144277
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.