Property ( 𝐰𝐋 ) and the reciprocal Dunford-Pettis property in projective tensor products

Ioana Ghenciu

Commentationes Mathematicae Universitatis Carolinae (2015)

  • Volume: 56, Issue: 3, page 319-329
  • ISSN: 0010-2628

Abstract

top
A Banach space X has the reciprocal Dunford-Pettis property ( R D P P ) if every completely continuous operator T from X to any Banach space Y is weakly compact. A Banach space X has the R D P P (resp. property ( w L ) ) if every L -subset of X * is relatively weakly compact (resp. weakly precompact). We prove that the projective tensor product X π Y has property ( w L ) when X has the R D P P , Y has property ( w L ) , and L ( X , Y * ) = K ( X , Y * ) .

How to cite

top

Ghenciu, Ioana. "Property $ \bf {(wL)}$ and the reciprocal Dunford-Pettis property in projective tensor products." Commentationes Mathematicae Universitatis Carolinae 56.3 (2015): 319-329. <http://eudml.org/doc/271640>.

@article{Ghenciu2015,
abstract = {A Banach space $X$ has the reciprocal Dunford-Pettis property ($RDPP$) if every completely continuous operator $T$ from $X$ to any Banach space $Y$ is weakly compact. A Banach space $X$ has the $RDPP$ (resp. property $(wL)$) if every $L$-subset of $X^*$ is relatively weakly compact (resp. weakly precompact). We prove that the projective tensor product $X \otimes \{_\pi \} Y$ has property $(wL)$ when $X$ has the $RDPP$, $Y$ has property $(wL)$, and $L(X,Y^*)=K(X,Y^*)$.},
author = {Ghenciu, Ioana},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {the reciprocal Dunford-Pettis property; property $(wL)$; spaces of compact operators; weakly precompact sets},
language = {eng},
number = {3},
pages = {319-329},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Property $ \bf \{(wL)\}$ and the reciprocal Dunford-Pettis property in projective tensor products},
url = {http://eudml.org/doc/271640},
volume = {56},
year = {2015},
}

TY - JOUR
AU - Ghenciu, Ioana
TI - Property $ \bf {(wL)}$ and the reciprocal Dunford-Pettis property in projective tensor products
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 3
SP - 319
EP - 329
AB - A Banach space $X$ has the reciprocal Dunford-Pettis property ($RDPP$) if every completely continuous operator $T$ from $X$ to any Banach space $Y$ is weakly compact. A Banach space $X$ has the $RDPP$ (resp. property $(wL)$) if every $L$-subset of $X^*$ is relatively weakly compact (resp. weakly precompact). We prove that the projective tensor product $X \otimes {_\pi } Y$ has property $(wL)$ when $X$ has the $RDPP$, $Y$ has property $(wL)$, and $L(X,Y^*)=K(X,Y^*)$.
LA - eng
KW - the reciprocal Dunford-Pettis property; property $(wL)$; spaces of compact operators; weakly precompact sets
UR - http://eudml.org/doc/271640
ER -

References

top
  1. Albiac F., Kalton N.J., Topics in Banach Space Theory, Graduate Texts in Mathematics, 233, Springer, New York, NY, USA, 2006. Zbl1094.46002MR2192298
  2. Ansari S.I., On Banach spaces Y for which B ( C ( Ω ) , Y ) = K ( C ( Ω ) , Y ) , Pacific J. Math. 169 (1995), 201–218. Zbl0831.47015MR1346253
  3. Bator E.M., Remarks on completely continuous operators, Bull. Polish Acad. Sci. Math. 37 (1989), 409–413. Zbl0767.46010MR1101901
  4. Bator E.M., Lewis P., 10.1002/mana.19921570109, Math. Nachr. 157 (2006), 99–103. Zbl0792.47021MR1233050DOI10.1002/mana.19921570109
  5. Bator E.M., Lewis P., Ochoa J., Evaluation maps, restriction maps, and compactness, Colloq. Math. 78 (1998), 1–17. Zbl0948.46008MR1658115
  6. Bessaga C., Pelczynski A., On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151–174. Zbl0084.09805MR0115069
  7. Bombal F., 10.1017/S0017089500009113, Glasgow Math. J. 32 (1990), 109–120. MR1045091DOI10.1017/S0017089500009113
  8. Bombal F., Villanueva I., 10.1090/S0002-9939-00-05662-8, Proc. Amer. Math. Soc. 129 (2001), 1359–1363. Zbl0983.46023MR1712870DOI10.1090/S0002-9939-00-05662-8
  9. Bourgain J., New Classes of p -spaces, Lecture Notes in Math., 889, Springer, Berlin-New York, 1981. MR0639014
  10. Bourgain J., 10.1007/BF02392189, Acta Math. 152 (1984), 1–2, 148. MR0736210DOI10.1007/BF02392189
  11. Bourgain J., H is a Grothendieck space, Studia Math. 75 (1983), 193–216. MR0722264
  12. Delbaen F., 10.1016/0021-8693(77)90328-3, J. Algebra 45 (1977), 284–294. MR0482222DOI10.1016/0021-8693(77)90328-3
  13. Diestel J., Sequences and Series in Banach Spaces, Graduate Texts in Mathematics, 92, Springer, Berlin, 1984. MR0737004
  14. Diestel J., 10.1090/conm/002/621850, Contemporary Math. 2 (1980), 15–60. Zbl0571.46013MR0621850DOI10.1090/conm/002/621850
  15. Diestel J., Uhl J.J., Jr., Vector Measures, Math. Surveys 15, American Mathematical Society, Providence, RI, 1977. Zbl0521.46035MR0453964
  16. Emmanuele G., 10.1017/S0305004100075435, Math. Proc. Cambr. Philos. Soc. 111 (1992), 331–335. MR1142753DOI10.1017/S0305004100075435
  17. Emmanuele G., 10.1017/S0305004100069632, Math. Proc. Cambridge Philos. Soc. 109 (1991), 161–166. MR1075128DOI10.1017/S0305004100069632
  18. Emmanuele G., On the containment of c 0 in spaces of compact operators, Bull. Sci. Math. 115 (1991), 177–184. MR1101022
  19. Emmanuele G., Dominated operators on C [ 0 , 1 ] and the ( C R P ) , Collect. Math. 41 (1990), 21–25. Zbl0752.47006MR1134442
  20. Emmanuele G., A dual characterization of Banach spaces not containing 1 , Bull. Polish Acad. Sci. Math. 34 (1986), 155–160. MR0861172
  21. Emmanuele G., John K., 10.1023/A:1022483919972, Czechoslovak Math. J. 47 (1997), 19–31. Zbl0903.46006MR1435603DOI10.1023/A:1022483919972
  22. Ghenciu I., Lewis P., 10.4064/ba56-3-7, Bull. Polish. Acad. Sci. Math. 56 (2008), 239–256. Zbl1167.46016MR2481977DOI10.4064/ba56-3-7
  23. Ghenciu I., Lewis P., 10.4064/cm106-2-11, Colloq. Math. 106 (2006), 311–324. MR2283818DOI10.4064/cm106-2-11
  24. Ghenciu I., Lewis P., 10.4064/ba54-3-6, Bull. Polish. Acad. Sci. Math. 54 (2006), 237–256. Zbl1118.46016MR2287199DOI10.4064/ba54-3-6
  25. Grothendieck A., 10.4153/CJM-1953-017-4, Canad. J. Math. 5 (1953), 129–173. Zbl0050.10902MR0058866DOI10.4153/CJM-1953-017-4
  26. Kalton N., 10.1007/BF01432152, Math. Ann. 208 (1974), 267–278. Zbl0266.47038MR0341154DOI10.1007/BF01432152
  27. Leavelle T., Dissertation, UNT. 
  28. Lindenstrauss J., Tzafriri L., Classical Banach Spaces II, Springer, Berlin-New York, 1979. Zbl0403.46022MR0540367
  29. Pełczyński A., On Banach spaces containing L 1 ( μ ) , Studia Math. 30 (1968), 231–246. 
  30. Pełczyński A., Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. Math. Astronom. Phys. 10 (1962), 641–648. Zbl0107.32504MR0149295
  31. Pełczyński A., Semadeni Z., Spaces of continuous functions (III), Studia Math. 18 (1959), 211–222. Zbl0091.27803MR0107806
  32. Pisier G., Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Regional Conf. Series in Math. 60, American Mathematical Society, Providence, RI, 1986. Zbl0588.46010MR0829919
  33. Pitt H.R., 10.1112/jlms/s1-11.3.174, J. London Math. Soc. 11 (1936), 174–180. Zbl0014.31201MR1574344DOI10.1112/jlms/s1-11.3.174
  34. Ryan R.A., Introduction to Tensor Products of Banach Spaces, Springer, London, 2002. Zbl1090.46001MR1888309
  35. Saab E., Saab P., On stability problems of some properties in Banach spaces, in: K. Sarosz (ed.), Function Spaces, Lecture Notes Pure Appl. Math., 136, Dekker, New York 1992, 367–394. Zbl0787.46022MR1152362
  36. Tzafriri L., 10.1016/0022-1236(72)90054-7, J. Functional Analysis 10 (1972), 1–18. Zbl0234.46013MR0358303DOI10.1016/0022-1236(72)90054-7

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.