Property and the reciprocal Dunford-Pettis property in projective tensor products
Commentationes Mathematicae Universitatis Carolinae (2015)
- Volume: 56, Issue: 3, page 319-329
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGhenciu, Ioana. "Property $ \bf {(wL)}$ and the reciprocal Dunford-Pettis property in projective tensor products." Commentationes Mathematicae Universitatis Carolinae 56.3 (2015): 319-329. <http://eudml.org/doc/271640>.
@article{Ghenciu2015,
abstract = {A Banach space $X$ has the reciprocal Dunford-Pettis property ($RDPP$) if every completely continuous operator $T$ from $X$ to any Banach space $Y$ is weakly compact. A Banach space $X$ has the $RDPP$ (resp. property $(wL)$) if every $L$-subset of $X^*$ is relatively weakly compact (resp. weakly precompact). We prove that the projective tensor product $X \otimes \{_\pi \} Y$ has property $(wL)$ when $X$ has the $RDPP$, $Y$ has property $(wL)$, and $L(X,Y^*)=K(X,Y^*)$.},
author = {Ghenciu, Ioana},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {the reciprocal Dunford-Pettis property; property $(wL)$; spaces of compact operators; weakly precompact sets},
language = {eng},
number = {3},
pages = {319-329},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Property $ \bf \{(wL)\}$ and the reciprocal Dunford-Pettis property in projective tensor products},
url = {http://eudml.org/doc/271640},
volume = {56},
year = {2015},
}
TY - JOUR
AU - Ghenciu, Ioana
TI - Property $ \bf {(wL)}$ and the reciprocal Dunford-Pettis property in projective tensor products
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 3
SP - 319
EP - 329
AB - A Banach space $X$ has the reciprocal Dunford-Pettis property ($RDPP$) if every completely continuous operator $T$ from $X$ to any Banach space $Y$ is weakly compact. A Banach space $X$ has the $RDPP$ (resp. property $(wL)$) if every $L$-subset of $X^*$ is relatively weakly compact (resp. weakly precompact). We prove that the projective tensor product $X \otimes {_\pi } Y$ has property $(wL)$ when $X$ has the $RDPP$, $Y$ has property $(wL)$, and $L(X,Y^*)=K(X,Y^*)$.
LA - eng
KW - the reciprocal Dunford-Pettis property; property $(wL)$; spaces of compact operators; weakly precompact sets
UR - http://eudml.org/doc/271640
ER -
References
top- Albiac F., Kalton N.J., Topics in Banach Space Theory, Graduate Texts in Mathematics, 233, Springer, New York, NY, USA, 2006. Zbl1094.46002MR2192298
- Ansari S.I., On Banach spaces for which , Pacific J. Math. 169 (1995), 201–218. Zbl0831.47015MR1346253
- Bator E.M., Remarks on completely continuous operators, Bull. Polish Acad. Sci. Math. 37 (1989), 409–413. Zbl0767.46010MR1101901
- Bator E.M., Lewis P., 10.1002/mana.19921570109, Math. Nachr. 157 (2006), 99–103. Zbl0792.47021MR1233050DOI10.1002/mana.19921570109
- Bator E.M., Lewis P., Ochoa J., Evaluation maps, restriction maps, and compactness, Colloq. Math. 78 (1998), 1–17. Zbl0948.46008MR1658115
- Bessaga C., Pelczynski A., On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151–174. Zbl0084.09805MR0115069
- Bombal F., 10.1017/S0017089500009113, Glasgow Math. J. 32 (1990), 109–120. MR1045091DOI10.1017/S0017089500009113
- Bombal F., Villanueva I., 10.1090/S0002-9939-00-05662-8, Proc. Amer. Math. Soc. 129 (2001), 1359–1363. Zbl0983.46023MR1712870DOI10.1090/S0002-9939-00-05662-8
- Bourgain J., New Classes of -spaces, Lecture Notes in Math., 889, Springer, Berlin-New York, 1981. MR0639014
- Bourgain J., 10.1007/BF02392189, Acta Math. 152 (1984), 1–2, 148. MR0736210DOI10.1007/BF02392189
- Bourgain J., is a Grothendieck space, Studia Math. 75 (1983), 193–216. MR0722264
- Delbaen F., 10.1016/0021-8693(77)90328-3, J. Algebra 45 (1977), 284–294. MR0482222DOI10.1016/0021-8693(77)90328-3
- Diestel J., Sequences and Series in Banach Spaces, Graduate Texts in Mathematics, 92, Springer, Berlin, 1984. MR0737004
- Diestel J., 10.1090/conm/002/621850, Contemporary Math. 2 (1980), 15–60. Zbl0571.46013MR0621850DOI10.1090/conm/002/621850
- Diestel J., Uhl J.J., Jr., Vector Measures, Math. Surveys 15, American Mathematical Society, Providence, RI, 1977. Zbl0521.46035MR0453964
- Emmanuele G., 10.1017/S0305004100075435, Math. Proc. Cambr. Philos. Soc. 111 (1992), 331–335. MR1142753DOI10.1017/S0305004100075435
- Emmanuele G., 10.1017/S0305004100069632, Math. Proc. Cambridge Philos. Soc. 109 (1991), 161–166. MR1075128DOI10.1017/S0305004100069632
- Emmanuele G., On the containment of in spaces of compact operators, Bull. Sci. Math. 115 (1991), 177–184. MR1101022
- Emmanuele G., Dominated operators on and the , Collect. Math. 41 (1990), 21–25. Zbl0752.47006MR1134442
- Emmanuele G., A dual characterization of Banach spaces not containing , Bull. Polish Acad. Sci. Math. 34 (1986), 155–160. MR0861172
- Emmanuele G., John K., 10.1023/A:1022483919972, Czechoslovak Math. J. 47 (1997), 19–31. Zbl0903.46006MR1435603DOI10.1023/A:1022483919972
- Ghenciu I., Lewis P., 10.4064/ba56-3-7, Bull. Polish. Acad. Sci. Math. 56 (2008), 239–256. Zbl1167.46016MR2481977DOI10.4064/ba56-3-7
- Ghenciu I., Lewis P., 10.4064/cm106-2-11, Colloq. Math. 106 (2006), 311–324. MR2283818DOI10.4064/cm106-2-11
- Ghenciu I., Lewis P., 10.4064/ba54-3-6, Bull. Polish. Acad. Sci. Math. 54 (2006), 237–256. Zbl1118.46016MR2287199DOI10.4064/ba54-3-6
- Grothendieck A., 10.4153/CJM-1953-017-4, Canad. J. Math. 5 (1953), 129–173. Zbl0050.10902MR0058866DOI10.4153/CJM-1953-017-4
- Kalton N., 10.1007/BF01432152, Math. Ann. 208 (1974), 267–278. Zbl0266.47038MR0341154DOI10.1007/BF01432152
- Leavelle T., Dissertation, UNT.
- Lindenstrauss J., Tzafriri L., Classical Banach Spaces II, Springer, Berlin-New York, 1979. Zbl0403.46022MR0540367
- Pełczyński A., On Banach spaces containing , Studia Math. 30 (1968), 231–246.
- Pełczyński A., Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. Math. Astronom. Phys. 10 (1962), 641–648. Zbl0107.32504MR0149295
- Pełczyński A., Semadeni Z., Spaces of continuous functions (III), Studia Math. 18 (1959), 211–222. Zbl0091.27803MR0107806
- Pisier G., Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Regional Conf. Series in Math. 60, American Mathematical Society, Providence, RI, 1986. Zbl0588.46010MR0829919
- Pitt H.R., 10.1112/jlms/s1-11.3.174, J. London Math. Soc. 11 (1936), 174–180. Zbl0014.31201MR1574344DOI10.1112/jlms/s1-11.3.174
- Ryan R.A., Introduction to Tensor Products of Banach Spaces, Springer, London, 2002. Zbl1090.46001MR1888309
- Saab E., Saab P., On stability problems of some properties in Banach spaces, in: K. Sarosz (ed.), Function Spaces, Lecture Notes Pure Appl. Math., 136, Dekker, New York 1992, 367–394. Zbl0787.46022MR1152362
- Tzafriri L., 10.1016/0022-1236(72)90054-7, J. Functional Analysis 10 (1972), 1–18. Zbl0234.46013MR0358303DOI10.1016/0022-1236(72)90054-7
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.