Non-Wieferich primes in number fields and a b c -conjecture

Srinivas Kotyada; Subramani Muthukrishnan

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 2, page 445-453
  • ISSN: 0011-4642

Abstract

top
Let K / be an algebraic number field of class number one and let 𝒪 K be its ring of integers. We show that there are infinitely many non-Wieferich primes with respect to certain units in 𝒪 K under the assumption of the a b c -conjecture for number fields.

How to cite

top

Kotyada, Srinivas, and Muthukrishnan, Subramani. "Non-Wieferich primes in number fields and $abc$-conjecture." Czechoslovak Mathematical Journal 68.2 (2018): 445-453. <http://eudml.org/doc/294271>.

@article{Kotyada2018,
abstract = {Let $K/\mathbb \{Q\}$ be an algebraic number field of class number one and let $\mathcal \{O\}_K$ be its ring of integers. We show that there are infinitely many non-Wieferich primes with respect to certain units in $\mathcal \{O\}_K$ under the assumption of the $abc$-conjecture for number fields.},
author = {Kotyada, Srinivas, Muthukrishnan, Subramani},
journal = {Czechoslovak Mathematical Journal},
keywords = {Wieferich prime; non-Wieferich prime; number field; $abc$-conjecture},
language = {eng},
number = {2},
pages = {445-453},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Non-Wieferich primes in number fields and $abc$-conjecture},
url = {http://eudml.org/doc/294271},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Kotyada, Srinivas
AU - Muthukrishnan, Subramani
TI - Non-Wieferich primes in number fields and $abc$-conjecture
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 2
SP - 445
EP - 453
AB - Let $K/\mathbb {Q}$ be an algebraic number field of class number one and let $\mathcal {O}_K$ be its ring of integers. We show that there are infinitely many non-Wieferich primes with respect to certain units in $\mathcal {O}_K$ under the assumption of the $abc$-conjecture for number fields.
LA - eng
KW - Wieferich prime; non-Wieferich prime; number field; $abc$-conjecture
UR - http://eudml.org/doc/294271
ER -

References

top
  1. Graves, H., Murty, M. R., 10.1016/j.jnt.2012.10.012, J. Number Theory 133 (2013), 1809-1813. (2013) Zbl1272.11014MR3027939DOI10.1016/j.jnt.2012.10.012
  2. Győry, K., 10.4064/aa133-3-6, Acta Arith. 133 (2008), 281-295. (2008) Zbl1188.11011MR2434605DOI10.4064/aa133-3-6
  3. Murty, M. R., 10.1090/conm/210/02785, Number Theory. Proc. Int. Conf. On Discrete Mathematics and Number Theory, Tiruchirapalli, India, 1996 V. K. Murty et al. Contemp. Math. 210. AMS, Providence (1998), 85-95. (1998) Zbl0893.11043MR1478486DOI10.1090/conm/210/02785
  4. Murty, M. R., Esmonde, J., 10.1007/b138452, Graduate Texts in Mathematics 190, Springer, Berlin (2005). (2005) Zbl1055.11001MR2090972DOI10.1007/b138452
  5. PrimeGrid Project. Available at http://www.primegrid.com/, . 
  6. Silverman, J. H., 10.1016/0022-314X(88)90019-4, J. Number Theory 30 (1988), 226-237. (1988) Zbl0654.10019MR0961918DOI10.1016/0022-314X(88)90019-4
  7. Vojta, P., 10.1007/BFb0072989, Lecture Notes in Mathematics 1239, Springer, Berlin (1987). (1987) Zbl0609.14011MR0883451DOI10.1007/BFb0072989
  8. Wieferich, A., 10.1515/crll.1909.136.293, J. Reine Angew. Math. 136 (1909), 293-302 German 9999JFM99999 40.0256.03. (1909) MR1580782DOI10.1515/crll.1909.136.293

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.