Page 1 Next

Displaying 1 – 20 of 202

Showing per page

1093

Paulo Ribenboim (2003)

Bollettino dell'Unione Matematica Italiana

A necessary and sufficient condition for the primality of Fermat numbers

Michal Křížek, Lawrence Somer (2001)

Mathematica Bohemica

We examine primitive roots modulo the Fermat number F m = 2 2 m + 1 . We show that an odd integer n 3 is a Fermat prime if and only if the set of primitive roots modulo n is equal to the set of quadratic non-residues modulo n . This result is extended to primitive roots modulo twice a Fermat number.

Aposyndesis in

José del Carmen Alberto-Domínguez, Gerardo Acosta, Maira Madriz-Mendoza (2023)

Commentationes Mathematicae Universitatis Carolinae

We consider the Golomb and the Kirch topologies in the set of natural numbers. Among other results, we show that while with the Kirch topology every arithmetic progression is aposyndetic, in the Golomb topology only for those arithmetic progressions P ( a , b ) with the property that every prime number that divides a also divides b , it follows that being connected, being Brown, being totally Brown, and being aposyndetic are all equivalent. This characterizes the arithmetic progressions which are aposyndetic...

Aritmetika III – změny číslic vedoucí k prvočíslům aneb variace na Bertrandův postulát

Tomáš Kepka, A. Jančařík, Jakub Michal (2022)

Učitel matematiky

Prvočísla a otázky s nimi spojené představují často jedny z nejtěžších problémů matematiky a mnohé z nich zůstávají stále otevřené. V tomto článku se zabýváme otázkou, jak blízko ke zvolenému číslu již můžeme nalézt nějaké prvočíslo. Na základě známých tvrzení lze vyslovit hypotézu, že z každého přirozeného čísla lze již změnou nejvýše dvou číslic získat prvočíslo. Úvahy,  kterými rozvíjíme známé výsledky, jsou čistě aritmetické povahy. Vyslovená hypotéza, která je závislá na hypotéze z (Hanson,...

Currently displaying 1 – 20 of 202

Page 1 Next