Optimal control of a frictionless contact problem with normal compliance
Commentationes Mathematicae Universitatis Carolinae (2018)
- Volume: 59, Issue: 3, page 327-342
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topTouzaline, Arezki. "Optimal control of a frictionless contact problem with normal compliance." Commentationes Mathematicae Universitatis Carolinae 59.3 (2018): 327-342. <http://eudml.org/doc/294274>.
@article{Touzaline2018,
abstract = {We consider a mathematical model which describes a contact between an elastic body and a foundation. The contact is frictionless with normal compliance. The goal of this paper is to study an optimal control problem which consists of leading the stress tensor as close as possible to a given target, by acting with a control on the boundary of the body. We state an optimal control problem which admits at least one solution. Next, we establish an optimality condition corresponding to a regularization of the model. We also introduce the regularized control problem for which we study the convergence when the regularization parameter tends to zero.},
author = {Touzaline, Arezki},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {optimal control; variational inequality; linear elastic frictionless contact; regularized problem},
language = {eng},
number = {3},
pages = {327-342},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Optimal control of a frictionless contact problem with normal compliance},
url = {http://eudml.org/doc/294274},
volume = {59},
year = {2018},
}
TY - JOUR
AU - Touzaline, Arezki
TI - Optimal control of a frictionless contact problem with normal compliance
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 3
SP - 327
EP - 342
AB - We consider a mathematical model which describes a contact between an elastic body and a foundation. The contact is frictionless with normal compliance. The goal of this paper is to study an optimal control problem which consists of leading the stress tensor as close as possible to a given target, by acting with a control on the boundary of the body. We state an optimal control problem which admits at least one solution. Next, we establish an optimality condition corresponding to a regularization of the model. We also introduce the regularized control problem for which we study the convergence when the regularization parameter tends to zero.
LA - eng
KW - optimal control; variational inequality; linear elastic frictionless contact; regularized problem
UR - http://eudml.org/doc/294274
ER -
References
top- Amassad A., Chenais D., Fabre C., Optimal control of an elastic contact problem involving Tresca friction law, Nonlinear Anal. Ser. A: Theory Methods 48 (2002), no. 8, 1107–1135. MR1880576
- Andersson L.-E., 10.1016/0362-546X(91)90035-Y, Nonlinear Anal. 16 (1991), no. 4, 347–370. MR1093846DOI10.1016/0362-546X(91)90035-Y
- Barbu V., Optimal Control of Variational Inequalities, Research Notes in Mathematics, 100, Pitman (Advanced Publishing Program), Boston, 1984. Zbl0696.49021MR0742624
- Bartosz K., Kalita P., Optimal control for a class of dynamic viscoelastic contact problems with adhesion, Dynam. Systems Appl. 21 (2012), no. 2–3, 269–292. MR2918380
- Bonnans J. F., Tiba D., 10.1007/BF01442403, Appl. Mathem. Optim. 23 (1991), no. 3, 299–312. MR1095664DOI10.1007/BF01442403
- Capatina A., Timofte C., 10.1016/j.na.2013.08.004, Nonlinear Anal. 94 (2014), 84–99. MR3120675DOI10.1016/j.na.2013.08.004
- Denkowski Z., Migórski S., Ochal A., Optimal control for a class of mechanical thermoviscoelastic frictional contact problems, Control Cybernet. 36 (2007), no. 3, 611–632. MR2376043
- Denkowski Z., Migórski S., Ochal A., A class of optimal control problems for piezoelectric frictional contact models, Nonlinear Anal. Real World Appl. 12 (2011), no. 3, 1883–1895. MR2781904
- Friedman A., 10.1137/0324025, SIAM J. Control Optim. 24 (1986), no. 3, 439–451. MR0838049DOI10.1137/0324025
- Kikuchi N., Oden J. T., Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM Studies in Applied Mathematics, 8, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1988. MR0961258
- Kimmerle S.-J., Moritz R., Optimal control of an elastic Tyre-Damper system with road contact, (P. Steinmann, G. Leugering, eds.) Special Issue: 85th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), Erlangen 2014, 14 (2014), no. 1, 875–876.
- Klarbring A., Mikelić A., Shillor M., Frictional contact problems with normal compliance, Internat. J. Engrg. Sci. 26 (1988), no. 8, 811–832. MR0958441
- Klarbring A., Mikelić A., Shillor M., On frictional problems with normal compliance, Nonlinear Anal. 13 (1989), no. 8, 935–955. MR1009079
- Laursen T. A., Computational Contact and Impact Mechanics, Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis, Springer, Berlin, 2002. MR1902698
- Lions J.-L., Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles, Gauthier-Villars, Paris, 1968 (French). MR0244606
- Martins J. A. C., Oden J. T., 10.1016/0362-546X(87)90055-1, Nonlinear Anal. 11 (1987), no. 3, 407–428. MR0881727DOI10.1016/0362-546X(87)90055-1
- Matei A., Micu S., 10.1016/j.na.2010.10.034, Nonlinear Anal. 74 (2011), no. 5, 1641–1652. MR2764365DOI10.1016/j.na.2010.10.034
- Matei A., Micu S., Boundary optimal control for a frictional problem with normal compliance, Appl. Math. Optim. (2017), 23 pages.
- Mignot F., 10.1016/0022-1236(76)90017-3, J. Functional Analysis 22 (1976), no. 2, 130–185 (French). MR0423155DOI10.1016/0022-1236(76)90017-3
- Mignot R., Puel J.-P., 10.1137/0322028, SIAM J. Control Optim. 22 (1984), no. 3, 466–476. MR0739836DOI10.1137/0322028
- Neittaanmaki P., Sprekels J., Tiba D., Optimization of Elliptic Systems: Theory and Applications, Springer Monographs in Mathematics, Springer, New York, 2006. MR2183776
- Oden J. T., Martins J. A. C., 10.1016/0045-7825(85)90009-X, Comput. Methods Appl. Mech. Engrg. 52 (1985), no. 1–3, 527–634. MR0822757DOI10.1016/0045-7825(85)90009-X
- Popov V. L., Contact Mechanics and Friction, Physical Principles and Applications, Springer, Heidelberg, 2010.
- Rochdi M., Shillor M., Sofonea M., 10.1023/A:1007413119583, J. Elasticity 51 (1998), no. 2, 105–126. MR1664496DOI10.1023/A:1007413119583
- Shillor M., Sofonea M., Telega J. J., 10.1007/b99799, Variational Methods, Lecture Notes in Physics, 655, Springer, Berlin, 2004. DOI10.1007/b99799
- Sofonea M., Matei A., Variational Inequalities with Applications, A Study of Antiplane Frictional Contact Problems, Advances in Mechanics and Mathematics, 18, Springer, 2009. MR2488869
- Sofonea M., Matei A., Mathematical Models in Contact Mechanics, London Mathematical Society, Lecture Note Series, 398, Cambridge University Press, 2012.
- Touzaline A., 10.1007/s10255-015-0519-8, Acta Math. Appl. Sin. Engl. Ser. 31 (2015), no. 4, 991–1000. MR3418276DOI10.1007/s10255-015-0519-8
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.