Optimal control of a frictionless contact problem with normal compliance

Arezki Touzaline

Commentationes Mathematicae Universitatis Carolinae (2018)

  • Volume: 59, Issue: 3, page 327-342
  • ISSN: 0010-2628

Abstract

top
We consider a mathematical model which describes a contact between an elastic body and a foundation. The contact is frictionless with normal compliance. The goal of this paper is to study an optimal control problem which consists of leading the stress tensor as close as possible to a given target, by acting with a control on the boundary of the body. We state an optimal control problem which admits at least one solution. Next, we establish an optimality condition corresponding to a regularization of the model. We also introduce the regularized control problem for which we study the convergence when the regularization parameter tends to zero.

How to cite

top

Touzaline, Arezki. "Optimal control of a frictionless contact problem with normal compliance." Commentationes Mathematicae Universitatis Carolinae 59.3 (2018): 327-342. <http://eudml.org/doc/294274>.

@article{Touzaline2018,
abstract = {We consider a mathematical model which describes a contact between an elastic body and a foundation. The contact is frictionless with normal compliance. The goal of this paper is to study an optimal control problem which consists of leading the stress tensor as close as possible to a given target, by acting with a control on the boundary of the body. We state an optimal control problem which admits at least one solution. Next, we establish an optimality condition corresponding to a regularization of the model. We also introduce the regularized control problem for which we study the convergence when the regularization parameter tends to zero.},
author = {Touzaline, Arezki},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {optimal control; variational inequality; linear elastic frictionless contact; regularized problem},
language = {eng},
number = {3},
pages = {327-342},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Optimal control of a frictionless contact problem with normal compliance},
url = {http://eudml.org/doc/294274},
volume = {59},
year = {2018},
}

TY - JOUR
AU - Touzaline, Arezki
TI - Optimal control of a frictionless contact problem with normal compliance
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 3
SP - 327
EP - 342
AB - We consider a mathematical model which describes a contact between an elastic body and a foundation. The contact is frictionless with normal compliance. The goal of this paper is to study an optimal control problem which consists of leading the stress tensor as close as possible to a given target, by acting with a control on the boundary of the body. We state an optimal control problem which admits at least one solution. Next, we establish an optimality condition corresponding to a regularization of the model. We also introduce the regularized control problem for which we study the convergence when the regularization parameter tends to zero.
LA - eng
KW - optimal control; variational inequality; linear elastic frictionless contact; regularized problem
UR - http://eudml.org/doc/294274
ER -

References

top
  1. Amassad A., Chenais D., Fabre C., Optimal control of an elastic contact problem involving Tresca friction law, Nonlinear Anal. Ser. A: Theory Methods 48 (2002), no. 8, 1107–1135. MR1880576
  2. Andersson L.-E., 10.1016/0362-546X(91)90035-Y, Nonlinear Anal. 16 (1991), no. 4, 347–370. MR1093846DOI10.1016/0362-546X(91)90035-Y
  3. Barbu V., Optimal Control of Variational Inequalities, Research Notes in Mathematics, 100, Pitman (Advanced Publishing Program), Boston, 1984. Zbl0696.49021MR0742624
  4. Bartosz K., Kalita P., Optimal control for a class of dynamic viscoelastic contact problems with adhesion, Dynam. Systems Appl. 21 (2012), no. 2–3, 269–292. MR2918380
  5. Bonnans J. F., Tiba D., 10.1007/BF01442403, Appl. Mathem. Optim. 23 (1991), no. 3, 299–312. MR1095664DOI10.1007/BF01442403
  6. Capatina A., Timofte C., 10.1016/j.na.2013.08.004, Nonlinear Anal. 94 (2014), 84–99. MR3120675DOI10.1016/j.na.2013.08.004
  7. Denkowski Z., Migórski S., Ochal A., Optimal control for a class of mechanical thermoviscoelastic frictional contact problems, Control Cybernet. 36 (2007), no. 3, 611–632. MR2376043
  8. Denkowski Z., Migórski S., Ochal A., A class of optimal control problems for piezoelectric frictional contact models, Nonlinear Anal. Real World Appl. 12 (2011), no. 3, 1883–1895. MR2781904
  9. Friedman A., 10.1137/0324025, SIAM J. Control Optim. 24 (1986), no. 3, 439–451. MR0838049DOI10.1137/0324025
  10. Kikuchi N., Oden J. T., Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM Studies in Applied Mathematics, 8, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1988. MR0961258
  11. Kimmerle S.-J., Moritz R., Optimal control of an elastic Tyre-Damper system with road contact, (P. Steinmann, G. Leugering, eds.) Special Issue: 85th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), Erlangen 2014, 14 (2014), no. 1, 875–876. 
  12. Klarbring A., Mikelić A., Shillor M., Frictional contact problems with normal compliance, Internat. J. Engrg. Sci. 26 (1988), no. 8, 811–832. MR0958441
  13. Klarbring A., Mikelić A., Shillor M., On frictional problems with normal compliance, Nonlinear Anal. 13 (1989), no. 8, 935–955. MR1009079
  14. Laursen T. A., Computational Contact and Impact Mechanics, Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis, Springer, Berlin, 2002. MR1902698
  15. Lions J.-L., Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles, Gauthier-Villars, Paris, 1968 (French). MR0244606
  16. Martins J. A. C., Oden J. T., 10.1016/0362-546X(87)90055-1, Nonlinear Anal. 11 (1987), no. 3, 407–428. MR0881727DOI10.1016/0362-546X(87)90055-1
  17. Matei A., Micu S., 10.1016/j.na.2010.10.034, Nonlinear Anal. 74 (2011), no. 5, 1641–1652. MR2764365DOI10.1016/j.na.2010.10.034
  18. Matei A., Micu S., Boundary optimal control for a frictional problem with normal compliance, Appl. Math. Optim. (2017), 23 pages. 
  19. Mignot F., 10.1016/0022-1236(76)90017-3, J. Functional Analysis 22 (1976), no. 2, 130–185 (French). MR0423155DOI10.1016/0022-1236(76)90017-3
  20. Mignot R., Puel J.-P., 10.1137/0322028, SIAM J. Control Optim. 22 (1984), no. 3, 466–476. MR0739836DOI10.1137/0322028
  21. Neittaanmaki P., Sprekels J., Tiba D., Optimization of Elliptic Systems: Theory and Applications, Springer Monographs in Mathematics, Springer, New York, 2006. MR2183776
  22. Oden J. T., Martins J. A. C., 10.1016/0045-7825(85)90009-X, Comput. Methods Appl. Mech. Engrg. 52 (1985), no. 1–3, 527–634. MR0822757DOI10.1016/0045-7825(85)90009-X
  23. Popov V. L., Contact Mechanics and Friction, Physical Principles and Applications, Springer, Heidelberg, 2010. 
  24. Rochdi M., Shillor M., Sofonea M., 10.1023/A:1007413119583, J. Elasticity 51 (1998), no. 2, 105–126. MR1664496DOI10.1023/A:1007413119583
  25. Shillor M., Sofonea M., Telega J. J., 10.1007/b99799, Variational Methods, Lecture Notes in Physics, 655, Springer, Berlin, 2004. DOI10.1007/b99799
  26. Sofonea M., Matei A., Variational Inequalities with Applications, A Study of Antiplane Frictional Contact Problems, Advances in Mechanics and Mathematics, 18, Springer, 2009. MR2488869
  27. Sofonea M., Matei A., Mathematical Models in Contact Mechanics, London Mathematical Society, Lecture Note Series, 398, Cambridge University Press, 2012. 
  28. Touzaline A., 10.1007/s10255-015-0519-8, Acta Math. Appl. Sin. Engl. Ser. 31 (2015), no. 4, 991–1000. MR3418276DOI10.1007/s10255-015-0519-8

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.