Displaying similar documents to “Optimal control of a frictionless contact problem with normal compliance”

Some Applications of Optimal Control Theory of Distributed Systems

Alfredo Bermudez (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this paper we present some applications of the J.-L. Lions' optimal control theory to real life problems in engineering and environmental sciences. More precisely, we deal with the following three problems: sterilization of canned foods, optimal management of waste-water treatment plants and noise control

Existence of optimal nonanticipating controls in piecewise deterministic control problems

Atle Seierstad (2013)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

Optimal nonanticipating controls are shown to exist in nonautonomous piecewise deterministic control problems with hard terminal restrictions. The assumptions needed are completely analogous to those needed to obtain optimal controls in deterministic control problems. The proof is based on well-known results on existence of deterministic optimal controls.

Control for the sine-gordon equation

Madalina Petcu, Roger Temam (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this article we apply the optimal and the robust control theory to the sine-Gordon equation. In our case the control is given by the boundary conditions and we work in a finite time horizon. We present at the beginning the optimal control problem and we derive a necessary condition of optimality and we continue by formulating a robust control problem for which existence and uniqueness of solutions are derived.

Convergence analysis of smoothing methods for optimal control of stationary variational inequalities with control constraints

Anton Schiela, Daniel Wachsmuth (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In the article an optimal control problem subject to a stationary variational inequality is investigated. The optimal control problem is complemented with pointwise control constraints. The convergence of a smoothing scheme is analyzed. There, the variational inequality is replaced by a semilinear elliptic equation. It is shown that solutions of the regularized optimal control problem converge to solutions of the original one. Passing to the limit in the optimality system of the regularized...