Chaos synchronization of TSUCS unified chaotic system, a modified function projective control method
Kybernetika (2018)
- Volume: 54, Issue: 4, page 829-843
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topTirandaz, Hamed. "Chaos synchronization of TSUCS unified chaotic system, a modified function projective control method." Kybernetika 54.4 (2018): 829-843. <http://eudml.org/doc/294276>.
@article{Tirandaz2018,
abstract = {The synchronization problem of the three-scroll unified chaotic system (TSUCS) is studied in this paper. A modified function projective synchronization (MFPS) method is developed to achieve this goal. Furthermore, the only parameter of the TSUCS unified chaotic system is considered unknown and estimated with an appropriate parameter estimation law. MFPS method is investigated for both identical and non-identical chaotic systems. Lyapunov stability theorem is utilized to verify the proposed feedback control laws and validate the proposed synchronization scheme. Finally, some numerical simulations are presented to assess the effectiveness of the theoretical discussions.},
author = {Tirandaz, Hamed},
journal = {Kybernetika},
keywords = {chaos synchronization; three-scroll unified chaotic system (TSUCS); modified function projective synchronization (MFPS); nonlinear dynamics},
language = {eng},
number = {4},
pages = {829-843},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Chaos synchronization of TSUCS unified chaotic system, a modified function projective control method},
url = {http://eudml.org/doc/294276},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Tirandaz, Hamed
TI - Chaos synchronization of TSUCS unified chaotic system, a modified function projective control method
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 4
SP - 829
EP - 843
AB - The synchronization problem of the three-scroll unified chaotic system (TSUCS) is studied in this paper. A modified function projective synchronization (MFPS) method is developed to achieve this goal. Furthermore, the only parameter of the TSUCS unified chaotic system is considered unknown and estimated with an appropriate parameter estimation law. MFPS method is investigated for both identical and non-identical chaotic systems. Lyapunov stability theorem is utilized to verify the proposed feedback control laws and validate the proposed synchronization scheme. Finally, some numerical simulations are presented to assess the effectiveness of the theoretical discussions.
LA - eng
KW - chaos synchronization; three-scroll unified chaotic system (TSUCS); modified function projective synchronization (MFPS); nonlinear dynamics
UR - http://eudml.org/doc/294276
ER -
References
top- Adloo, H., Roopaei, M., 10.1007/s11071-010-9880-6, Nonlinear Dynamics 65 (2011), 1-2, 141-159. MR2812015DOI10.1007/s11071-010-9880-6
- Aghababa, M. P., Heydari, A., 10.1016/j.apm.2011.09.023, Appl. Math. Modelling 36 (2012), 4, 1639-1652. MR2878135DOI10.1016/j.apm.2011.09.023
- Cai, L., Zhou, J., 10.1007/s11071-012-0474-3, Nonlinear Dynamics 70 (2012) 1, 541-549. MR2991292DOI10.1007/s11071-012-0474-3
- Chen, G., Ueta, T., 10.1142/s0218127499001024, Int. J. Bifurcation Chaos 9 (1999), 07, 1465-1466. Zbl0962.37013MR1729683DOI10.1142/s0218127499001024
- Chua, L. O., Lin, G.-N., 10.1109/31.55064, IEEE Trans. Circuits Syst. 37 (1990), 7, 885-902. MR1061874DOI10.1109/31.55064
- Chun-Lai, L., Mei, Z., Feng, Z., Xuan-Bing, Y., 10.1016/j.ijleo.2015.11.197, Optik - Int. J. Light Electron Optics 127 (2016), 5, 2830-2836. DOI10.1016/j.ijleo.2015.11.197
- Du, H., Zeng, Q., Wang, C., 10.1016/j.chaos.2009.03.120, Chaos, Solitons, Fractals 42 (2009), 4, 2399-2404. Zbl1198.93011MR2299092DOI10.1016/j.chaos.2009.03.120
- Elhadj, Z., Sprott, J. C., 10.2298/fuee1003345e, Facta Univers., Ser. Electronics and Energetics 23 (2010), 3, 345-355. DOI10.2298/fuee1003345e
- al., K.-S. Hong et, 10.1016/j.apm.2012.06.003, Appl. Math. Modelling 37 (2013), 4, 2460-2468. MR3002332DOI10.1016/j.apm.2012.06.003
- Hou, Y.-Y., Liau, B.-Y., Chen, H.-C., Synchronization of unified chaotic systems using sliding mode controller., Math. Problems Engrg. 2012. MR3007783
- Hu, C., Jiang, H., 10.1155/2014/369842, In: Abstract and Applied Analysis, Hindawi Publishing Corporation 2014, pp. 1-8. MR3228069DOI10.1155/2014/369842
- Li, G.-H., 10.1016/j.chaos.2005.12.009, Chaos, Solitons, Fractals 32 (2007), 5, 1786-1790. Zbl1134.37331MR2299092DOI10.1016/j.chaos.2005.12.009
- Li, C., Liao, X., Zhang, X., 10.1063/1.1899823, Chaos: An Interdisciplinary J. Nonlinear Sci. 15 (2005), 2, 023104. MR2150221DOI10.1063/1.1899823
- Liang, H., Wang, Z., Yue, Z., Lu, R., Generalized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication., Kybernetika 48 (2012), 2, 190-205. Zbl1256.93084MR2954320
- Lorenz, E. N., 10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2, J. Atmospher. Sci. 20 (1963), 2, 130-141. DOI10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
- Lü, J., Chen, G., 10.1142/s0218127402004620, Int. J. Bifurcation Chaos 12 (2002), 03, 659-661. Zbl1063.34510MR1894886DOI10.1142/s0218127402004620
- Lü, J., Chen, G., Cheng, D., Čelikovský, S., 10.1142/s021812740200631x, Int. J. Bifurcation Chaos 12 (2002), 12, 2917-2926. MR1956411DOI10.1142/s021812740200631x
- Ma, T., Zhang, J., Zhou, Y., Wang, H., 10.1016/j.neucom.2015.02.071, Neurocomputing 164 (2015), 182-189. DOI10.1016/j.neucom.2015.02.071
- Mainieri, R., Rehacek, J., 10.1103/physrevlett.82.3042, Phys. Rev. Lett. 82 (1999), 15, 3042. DOI10.1103/physrevlett.82.3042
- Nik, H. S., Saberi-Nadjafi, J., Effati, S., Gorder, R. A. Van, 10.1016/j.amc.2014.08.108, Appl. Math. Comput. 248 (2014), 55-69. MR3276664DOI10.1016/j.amc.2014.08.108
- Ott, E., Grebogi, C., Yorke, J. A., 10.1103/physrevlett.64.1196, Phys. Rev. Lett. 64 (1990), 11, 1196-1199. Zbl0964.37502MR1041523DOI10.1103/physrevlett.64.1196
- Pan, L., Zhou, W., Fang, J., Li, D., 10.1016/j.cnsns.2010.01.025, Comm. Nonlinear Sci. Numer. Simul. 15 (2010), 12, 3754-3762. MR2652647DOI10.1016/j.cnsns.2010.01.025
- Pan, L., Zhou, W., Fang, J., Li, D., A new three-scroll unified chaotic system coined., Int. J. Nonlinear Sci. 10 (2010), 4, 462-474. MR2834932
- Park, J. H., 10.1515/ijnsns.2005.6.2.201, Int. J. Nonlinear Sci. Numer. Simulation 6 (2005), 2, 201-206. MR3110160DOI10.1515/ijnsns.2005.6.2.201
- Pecora, L. M., Carroll, T. L., 10.1103/physrevlett.64.821, Phys. Rev. Lett. 64 (1990), 8, 821. Zbl1098.37553MR1038263DOI10.1103/physrevlett.64.821
- Richter, H., 10.1016/s0375-9601(02)00183-4, Physics Letters A 300 (2002), 2, 182-188. MR1928022DOI10.1016/s0375-9601(02)00183-4
- Rosenblum, M. G., Pikovsky, A. S., Kurths, J., 10.1103/physrevlett.78.4193, Phys. Rev. Lett. 78 (1997), 22, 4193. MR1869044DOI10.1103/physrevlett.78.4193
- Shen, C., Yu, S., Lü, J., Chen, G., 10.1109/tcsi.2013.2283994, IEEE Tran. Circuits Systems I 61 (2014), 3, 854-864. DOI10.1109/tcsi.2013.2283994
- Shen, C., Yu, S., Lü, J., Chen, G., 10.1109/tcsi.2014.2304655, IEEE Trans. Circuits Systems I 61 (2014), 8, 2380-2389. DOI10.1109/tcsi.2014.2304655
- Sun, J., Shen, Y., Wang, X., Chen, J., 10.1007/s11071-013-1133-z, Nonlinear Dynamics 76 (1) (2014) 383-397. MR3189178DOI10.1007/s11071-013-1133-z
- Tan, S., Wang, Y., Lü, J., 10.1109/tac.2016.2545106, IEEE Trans. Automat. Control 61 (2016), 12, 4118-4124. MR3582527DOI10.1109/tac.2016.2545106
- Tirandaz, H., 10.1007/s12043-017-1482-0, Pramana 89 (2017), 6. DOI10.1007/s12043-017-1482-0
- Tirandaz, H., Aminabadi, S. Saiedi, Tavakoli, H., 10.1016/j.aej.2017.03.041, In: Alexandria Engineering Journal, 2017. DOI10.1016/j.aej.2017.03.041
- Wang, Q., Yu, S., Li, C., Lü, J., Fang, X., Guyeux, C., Bahi, J. M., 10.1109/tcsi.2016.2515398, IEEE Trans. Circuits Systems I 63 (2016), 3, 401-412. MR3488842DOI10.1109/tcsi.2016.2515398
- Wu, X., Guan, Z.-H., Li, T., 10.1007/978-3-540-72393-6_2, In: International Symposium on Neural Networks, Springer, 2007, pp. 8-15. DOI10.1007/978-3-540-72393-6_2
- Wu, X., Li, J., Upadhyay, R. K., 10.1080/00207160801993232, Int. J. Comput. Math. 87 (2010) 199-214. MR2598736DOI10.1080/00207160801993232
- Wu, H., Xu, B. L., Fan, C., Wu, X. Y., 10.4028/www.scientific.net/amm.321-324.2464, In: Applied Mechanics and Materials 321, Trans. Tech. Publ. 2013, pp. 2464-2470. MR2333731DOI10.4028/www.scientific.net/amm.321-324.2464
- Yan, Z., 10.1016/j.physleta.2004.11.042, Phys. Lett. A 334 (2005), 4, 406-412. DOI10.1016/j.physleta.2004.11.042
- Yazdanbakhsh, O., Hosseinnia, S., Askari, J., 10.1007/s11071-011-0117-0, Nonlinear Dynamics 67 (2012), 3, 1903-1912. MR2877427DOI10.1007/s11071-011-0117-0
- Yu, Y., 10.1016/j.chaos.2006.06.104, Chaos, Solitons, Fractals 36 (2008), 2, 329-333. DOI10.1016/j.chaos.2006.06.104
- Yu, J., Chen, B., Yu, H., Gao, J., 10.1016/j.nonrwa.2010.07.009, Nonlinear Analysis: Real World Appl. 12 (2011), 1, 671-681. MR2729052DOI10.1016/j.nonrwa.2010.07.009
- Zhang, X., Zhu, H., Yao, H., 10.1007/s10883-012-9155-2, J. Dynamical Control Systems 18 (2012), 4, 467-477. MR2980534DOI10.1007/s10883-012-9155-2
- Zhao, Q., Yin, H., 10.1016/j.ijleo.2012.06.075, Optik, Elsevier 124 (2013) 15, 2161-2164. DOI10.1016/j.ijleo.2012.06.075
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.