Chaos synchronization of TSUCS unified chaotic system, a modified function projective control method

Hamed Tirandaz

Kybernetika (2018)

  • Volume: 54, Issue: 4, page 829-843
  • ISSN: 0023-5954

Abstract

top
The synchronization problem of the three-scroll unified chaotic system (TSUCS) is studied in this paper. A modified function projective synchronization (MFPS) method is developed to achieve this goal. Furthermore, the only parameter of the TSUCS unified chaotic system is considered unknown and estimated with an appropriate parameter estimation law. MFPS method is investigated for both identical and non-identical chaotic systems. Lyapunov stability theorem is utilized to verify the proposed feedback control laws and validate the proposed synchronization scheme. Finally, some numerical simulations are presented to assess the effectiveness of the theoretical discussions.

How to cite

top

Tirandaz, Hamed. "Chaos synchronization of TSUCS unified chaotic system, a modified function projective control method." Kybernetika 54.4 (2018): 829-843. <http://eudml.org/doc/294276>.

@article{Tirandaz2018,
abstract = {The synchronization problem of the three-scroll unified chaotic system (TSUCS) is studied in this paper. A modified function projective synchronization (MFPS) method is developed to achieve this goal. Furthermore, the only parameter of the TSUCS unified chaotic system is considered unknown and estimated with an appropriate parameter estimation law. MFPS method is investigated for both identical and non-identical chaotic systems. Lyapunov stability theorem is utilized to verify the proposed feedback control laws and validate the proposed synchronization scheme. Finally, some numerical simulations are presented to assess the effectiveness of the theoretical discussions.},
author = {Tirandaz, Hamed},
journal = {Kybernetika},
keywords = {chaos synchronization; three-scroll unified chaotic system (TSUCS); modified function projective synchronization (MFPS); nonlinear dynamics},
language = {eng},
number = {4},
pages = {829-843},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Chaos synchronization of TSUCS unified chaotic system, a modified function projective control method},
url = {http://eudml.org/doc/294276},
volume = {54},
year = {2018},
}

TY - JOUR
AU - Tirandaz, Hamed
TI - Chaos synchronization of TSUCS unified chaotic system, a modified function projective control method
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 4
SP - 829
EP - 843
AB - The synchronization problem of the three-scroll unified chaotic system (TSUCS) is studied in this paper. A modified function projective synchronization (MFPS) method is developed to achieve this goal. Furthermore, the only parameter of the TSUCS unified chaotic system is considered unknown and estimated with an appropriate parameter estimation law. MFPS method is investigated for both identical and non-identical chaotic systems. Lyapunov stability theorem is utilized to verify the proposed feedback control laws and validate the proposed synchronization scheme. Finally, some numerical simulations are presented to assess the effectiveness of the theoretical discussions.
LA - eng
KW - chaos synchronization; three-scroll unified chaotic system (TSUCS); modified function projective synchronization (MFPS); nonlinear dynamics
UR - http://eudml.org/doc/294276
ER -

References

top
  1. Adloo, H., Roopaei, M., 10.1007/s11071-010-9880-6, Nonlinear Dynamics 65 (2011), 1-2, 141-159. MR2812015DOI10.1007/s11071-010-9880-6
  2. Aghababa, M. P., Heydari, A., 10.1016/j.apm.2011.09.023, Appl. Math. Modelling 36 (2012), 4, 1639-1652. MR2878135DOI10.1016/j.apm.2011.09.023
  3. Cai, L., Zhou, J., 10.1007/s11071-012-0474-3, Nonlinear Dynamics 70 (2012) 1, 541-549. MR2991292DOI10.1007/s11071-012-0474-3
  4. Chen, G., Ueta, T., 10.1142/s0218127499001024, Int. J. Bifurcation Chaos 9 (1999), 07, 1465-1466. Zbl0962.37013MR1729683DOI10.1142/s0218127499001024
  5. Chua, L. O., Lin, G.-N., 10.1109/31.55064, IEEE Trans. Circuits Syst. 37 (1990), 7, 885-902. MR1061874DOI10.1109/31.55064
  6. Chun-Lai, L., Mei, Z., Feng, Z., Xuan-Bing, Y., 10.1016/j.ijleo.2015.11.197, Optik - Int. J. Light Electron Optics 127 (2016), 5, 2830-2836. DOI10.1016/j.ijleo.2015.11.197
  7. Du, H., Zeng, Q., Wang, C., 10.1016/j.chaos.2009.03.120, Chaos, Solitons, Fractals 42 (2009), 4, 2399-2404. Zbl1198.93011MR2299092DOI10.1016/j.chaos.2009.03.120
  8. Elhadj, Z., Sprott, J. C., 10.2298/fuee1003345e, Facta Univers., Ser. Electronics and Energetics 23 (2010), 3, 345-355. DOI10.2298/fuee1003345e
  9. al., K.-S. Hong et, 10.1016/j.apm.2012.06.003, Appl. Math. Modelling 37 (2013), 4, 2460-2468. MR3002332DOI10.1016/j.apm.2012.06.003
  10. Hou, Y.-Y., Liau, B.-Y., Chen, H.-C., Synchronization of unified chaotic systems using sliding mode controller., Math. Problems Engrg. 2012. MR3007783
  11. Hu, C., Jiang, H., 10.1155/2014/369842, In: Abstract and Applied Analysis, Hindawi Publishing Corporation 2014, pp. 1-8. MR3228069DOI10.1155/2014/369842
  12. Li, G.-H., 10.1016/j.chaos.2005.12.009, Chaos, Solitons, Fractals 32 (2007), 5, 1786-1790. Zbl1134.37331MR2299092DOI10.1016/j.chaos.2005.12.009
  13. Li, C., Liao, X., Zhang, X., 10.1063/1.1899823, Chaos: An Interdisciplinary J. Nonlinear Sci. 15 (2005), 2, 023104. MR2150221DOI10.1063/1.1899823
  14. Liang, H., Wang, Z., Yue, Z., Lu, R., Generalized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication., Kybernetika 48 (2012), 2, 190-205. Zbl1256.93084MR2954320
  15. Lorenz, E. N., 10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2, J. Atmospher. Sci. 20 (1963), 2, 130-141. DOI10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
  16. Lü, J., Chen, G., 10.1142/s0218127402004620, Int. J. Bifurcation Chaos 12 (2002), 03, 659-661. Zbl1063.34510MR1894886DOI10.1142/s0218127402004620
  17. Lü, J., Chen, G., Cheng, D., Čelikovský, S., 10.1142/s021812740200631x, Int. J. Bifurcation Chaos 12 (2002), 12, 2917-2926. MR1956411DOI10.1142/s021812740200631x
  18. Ma, T., Zhang, J., Zhou, Y., Wang, H., 10.1016/j.neucom.2015.02.071, Neurocomputing 164 (2015), 182-189. DOI10.1016/j.neucom.2015.02.071
  19. Mainieri, R., Rehacek, J., 10.1103/physrevlett.82.3042, Phys. Rev. Lett. 82 (1999), 15, 3042. DOI10.1103/physrevlett.82.3042
  20. Nik, H. S., Saberi-Nadjafi, J., Effati, S., Gorder, R. A. Van, 10.1016/j.amc.2014.08.108, Appl. Math. Comput. 248 (2014), 55-69. MR3276664DOI10.1016/j.amc.2014.08.108
  21. Ott, E., Grebogi, C., Yorke, J. A., 10.1103/physrevlett.64.1196, Phys. Rev. Lett. 64 (1990), 11, 1196-1199. Zbl0964.37502MR1041523DOI10.1103/physrevlett.64.1196
  22. Pan, L., Zhou, W., Fang, J., Li, D., 10.1016/j.cnsns.2010.01.025, Comm. Nonlinear Sci. Numer. Simul. 15 (2010), 12, 3754-3762. MR2652647DOI10.1016/j.cnsns.2010.01.025
  23. Pan, L., Zhou, W., Fang, J., Li, D., A new three-scroll unified chaotic system coined., Int. J. Nonlinear Sci. 10 (2010), 4, 462-474. MR2834932
  24. Park, J. H., 10.1515/ijnsns.2005.6.2.201, Int. J. Nonlinear Sci. Numer. Simulation 6 (2005), 2, 201-206. MR3110160DOI10.1515/ijnsns.2005.6.2.201
  25. Pecora, L. M., Carroll, T. L., 10.1103/physrevlett.64.821, Phys. Rev. Lett. 64 (1990), 8, 821. Zbl1098.37553MR1038263DOI10.1103/physrevlett.64.821
  26. Richter, H., 10.1016/s0375-9601(02)00183-4, Physics Letters A 300 (2002), 2, 182-188. MR1928022DOI10.1016/s0375-9601(02)00183-4
  27. Rosenblum, M. G., Pikovsky, A. S., Kurths, J., 10.1103/physrevlett.78.4193, Phys. Rev. Lett. 78 (1997), 22, 4193. MR1869044DOI10.1103/physrevlett.78.4193
  28. Shen, C., Yu, S., Lü, J., Chen, G., 10.1109/tcsi.2013.2283994, IEEE Tran. Circuits Systems I 61 (2014), 3, 854-864. DOI10.1109/tcsi.2013.2283994
  29. Shen, C., Yu, S., Lü, J., Chen, G., 10.1109/tcsi.2014.2304655, IEEE Trans. Circuits Systems I 61 (2014), 8, 2380-2389. DOI10.1109/tcsi.2014.2304655
  30. Sun, J., Shen, Y., Wang, X., Chen, J., 10.1007/s11071-013-1133-z, Nonlinear Dynamics 76 (1) (2014) 383-397. MR3189178DOI10.1007/s11071-013-1133-z
  31. Tan, S., Wang, Y., Lü, J., 10.1109/tac.2016.2545106, IEEE Trans. Automat. Control 61 (2016), 12, 4118-4124. MR3582527DOI10.1109/tac.2016.2545106
  32. Tirandaz, H., 10.1007/s12043-017-1482-0, Pramana 89 (2017), 6. DOI10.1007/s12043-017-1482-0
  33. Tirandaz, H., Aminabadi, S. Saiedi, Tavakoli, H., 10.1016/j.aej.2017.03.041, In: Alexandria Engineering Journal, 2017. DOI10.1016/j.aej.2017.03.041
  34. Wang, Q., Yu, S., Li, C., Lü, J., Fang, X., Guyeux, C., Bahi, J. M., 10.1109/tcsi.2016.2515398, IEEE Trans. Circuits Systems I 63 (2016), 3, 401-412. MR3488842DOI10.1109/tcsi.2016.2515398
  35. Wu, X., Guan, Z.-H., Li, T., 10.1007/978-3-540-72393-6_2, In: International Symposium on Neural Networks, Springer, 2007, pp. 8-15. DOI10.1007/978-3-540-72393-6_2
  36. Wu, X., Li, J., Upadhyay, R. K., 10.1080/00207160801993232, Int. J. Comput. Math. 87 (2010) 199-214. MR2598736DOI10.1080/00207160801993232
  37. Wu, H., Xu, B. L., Fan, C., Wu, X. Y., 10.4028/www.scientific.net/amm.321-324.2464, In: Applied Mechanics and Materials 321, Trans. Tech. Publ. 2013, pp. 2464-2470. MR2333731DOI10.4028/www.scientific.net/amm.321-324.2464
  38. Yan, Z., 10.1016/j.physleta.2004.11.042, Phys. Lett. A 334 (2005), 4, 406-412. DOI10.1016/j.physleta.2004.11.042
  39. Yazdanbakhsh, O., Hosseinnia, S., Askari, J., 10.1007/s11071-011-0117-0, Nonlinear Dynamics 67 (2012), 3, 1903-1912. MR2877427DOI10.1007/s11071-011-0117-0
  40. Yu, Y., 10.1016/j.chaos.2006.06.104, Chaos, Solitons, Fractals 36 (2008), 2, 329-333. DOI10.1016/j.chaos.2006.06.104
  41. Yu, J., Chen, B., Yu, H., Gao, J., 10.1016/j.nonrwa.2010.07.009, Nonlinear Analysis: Real World Appl. 12 (2011), 1, 671-681. MR2729052DOI10.1016/j.nonrwa.2010.07.009
  42. Zhang, X., Zhu, H., Yao, H., 10.1007/s10883-012-9155-2, J. Dynamical Control Systems 18 (2012), 4, 467-477. MR2980534DOI10.1007/s10883-012-9155-2
  43. Zhao, Q., Yin, H., 10.1016/j.ijleo.2012.06.075, Optik, Elsevier 124 (2013) 15, 2161-2164. DOI10.1016/j.ijleo.2012.06.075

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.