Geodesically equivalent metrics on homogenous spaces
Neda Bokan; Tijana Šukilović; Srdjan Vukmirović
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 4, page 945-954
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBokan, Neda, Šukilović, Tijana, and Vukmirović, Srdjan. "Geodesically equivalent metrics on homogenous spaces." Czechoslovak Mathematical Journal 69.4 (2019): 945-954. <http://eudml.org/doc/294279>.
@article{Bokan2019,
abstract = {Two metrics on a manifold are geodesically equivalent if the sets of their unparameterized geodesics coincide. We show that if two $G$-invariant metrics of arbitrary signature on homogenous space $G/H$ are geodesically equivalent, they are affinely equivalent, i.e. they have the same Levi-Civita connection. We also prove that the existence of nonproportional, geodesically equivalent, $G$-invariant metrics on homogenous space $G/H$ implies that their holonomy algebra cannot be full. We give an algorithm for finding all left invariant metrics geodesically equivalent to a given left invariant metric on a Lie group. Using that algorithm we prove that no two left invariant metrics of any signature on sphere $S^3$ are geodesically equivalent. However, we present examples of Lie groups that admit geodesically equivalent, nonproportional, left-invariant metrics.},
author = {Bokan, Neda, Šukilović, Tijana, Vukmirović, Srdjan},
journal = {Czechoslovak Mathematical Journal},
keywords = {invariant metric; geodesically equivalent metric; affinely equivalent metric},
language = {eng},
number = {4},
pages = {945-954},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Geodesically equivalent metrics on homogenous spaces},
url = {http://eudml.org/doc/294279},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Bokan, Neda
AU - Šukilović, Tijana
AU - Vukmirović, Srdjan
TI - Geodesically equivalent metrics on homogenous spaces
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 945
EP - 954
AB - Two metrics on a manifold are geodesically equivalent if the sets of their unparameterized geodesics coincide. We show that if two $G$-invariant metrics of arbitrary signature on homogenous space $G/H$ are geodesically equivalent, they are affinely equivalent, i.e. they have the same Levi-Civita connection. We also prove that the existence of nonproportional, geodesically equivalent, $G$-invariant metrics on homogenous space $G/H$ implies that their holonomy algebra cannot be full. We give an algorithm for finding all left invariant metrics geodesically equivalent to a given left invariant metric on a Lie group. Using that algorithm we prove that no two left invariant metrics of any signature on sphere $S^3$ are geodesically equivalent. However, we present examples of Lie groups that admit geodesically equivalent, nonproportional, left-invariant metrics.
LA - eng
KW - invariant metric; geodesically equivalent metric; affinely equivalent metric
UR - http://eudml.org/doc/294279
ER -
References
top- Bokan, N., Šukilović, T., Vukmirović, S., 10.1007/s10711-014-9980-4, Geom. Dedicata 177 (2015), 83-102. (2015) Zbl1326.53065MR3370025DOI10.1007/s10711-014-9980-4
- Bolsinov, A. V., Kiosak, V., Matveev, V. S., 10.1112/jlms/jdp032, J. Lond. Math. Soc., II. Ser. 80 (2009), 341-356. (2009) Zbl1175.53022MR2545256DOI10.1112/jlms/jdp032
- Eisenhart, L. P., 10.1090/S0002-9947-1923-1501245-6, Trans. Amer. Math. Soc. 25 (1923), 297-306 9999JFM99999 49.0539.01. (1923) MR1501245DOI10.1090/S0002-9947-1923-1501245-6
- Hall, G. S., Lonie, D. P., 10.1088/0264-9381/17/6/304, Classical Quantum Gravity 17 (2000), 1369-1382. (2000) Zbl0957.83014MR1752641DOI10.1088/0264-9381/17/6/304
- Hall, G. S., Lonie, D. P., 10.1016/j.geomphys.2010.10.007, J. Geom. Phys. 61 (2011), 381-399. (2011) Zbl1208.83035MR2746125DOI10.1016/j.geomphys.2010.10.007
- Kiosak, V., Matveev, V. S., 10.1007/s00220-008-0719-7, Commun. Math. Phys. 289 (2009), 383-400. (2009) Zbl1170.53025MR2504854DOI10.1007/s00220-008-0719-7
- Kiosak, V., Matveev, V. S., 10.1007/s00220-010-1037-4, Commun. Math. Phys. 297 (2010), 401-426. (2010) Zbl1197.53055MR2651904DOI10.1007/s00220-010-1037-4
- Levi-Civita, T., 10.1007/BF02419530, Annali di Mat. 24 Italian (1896), 255-300 9999JFM99999 27.0603.04. (1896) MR2551879DOI10.1007/BF02419530
- Sinyukov, N. S., On geodesic mappings of Riemannian spaces onto symmetric Riemannian spaces, Dokl. Akad. Nauk SSSR, n. Ser. 98 (1954), 21-23 Russian. (1954) Zbl0056.15301MR0065994
- Topalov, P., 10.1023/A:1006369525091, Acta Appl. Math. 59 (1999), 271-298. (1999) Zbl0972.53048MR1744754DOI10.1023/A:1006369525091
- Wang, Z., Hall, G., 10.1016/j.geomphys.2012.12.004, J. Geom. Phys. 66 (2013), 37-49. (2013) Zbl1285.53014MR3019271DOI10.1016/j.geomphys.2012.12.004
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.