Contact Quantization: Quantum Mechanics = Parallel transport

G. Herczeg; E. Latini; Andrew Waldron

Archivum Mathematicum (2018)

  • Volume: 054, Issue: 5, page 281-298
  • ISSN: 0044-8753

Abstract

top
Quantization together with quantum dynamics can be simultaneously formulated as the problem of finding an appropriate flat connection on a Hilbert bundle over a contact manifold. Contact geometry treats time, generalized positions and momenta as points on an underlying phase-spacetime and reduces classical mechanics to contact topology. Contact quantization describes quantum dynamics in terms of parallel transport for a flat connection; the ultimate goal being to also handle quantum systems in terms of contact topology. Our main result is a proof of local, formal gauge equivalence for a broad class of quantum dynamical systems—just as classical dynamics depends on choices of clocks, local quantum dynamics can be reduced to a problem of studying gauge transformations. We further show how to write quantum correlators in terms of parallel transport and in turn matrix elements for Hilbert bundle gauge transformations, and give the path integral formulation of these results. Finally, we show how to relate topology of the underlying contact manifold to boundary conditions for quantum wave functions.

How to cite

top

Herczeg, G., Latini, E., and Waldron, Andrew. "Contact Quantization: Quantum Mechanics = Parallel transport." Archivum Mathematicum 054.5 (2018): 281-298. <http://eudml.org/doc/294288>.

@article{Herczeg2018,
abstract = {Quantization together with quantum dynamics can be simultaneously formulated as the problem of finding an appropriate flat connection on a Hilbert bundle over a contact manifold. Contact geometry treats time, generalized positions and momenta as points on an underlying phase-spacetime and reduces classical mechanics to contact topology. Contact quantization describes quantum dynamics in terms of parallel transport for a flat connection; the ultimate goal being to also handle quantum systems in terms of contact topology. Our main result is a proof of local, formal gauge equivalence for a broad class of quantum dynamical systems—just as classical dynamics depends on choices of clocks, local quantum dynamics can be reduced to a problem of studying gauge transformations. We further show how to write quantum correlators in terms of parallel transport and in turn matrix elements for Hilbert bundle gauge transformations, and give the path integral formulation of these results. Finally, we show how to relate topology of the underlying contact manifold to boundary conditions for quantum wave functions.},
author = {Herczeg, G., Latini, E., Waldron, Andrew},
journal = {Archivum Mathematicum},
keywords = {quantum mechanics; contact geometry; quantization; contact topology; flat connections; clock ambiguity},
language = {eng},
number = {5},
pages = {281-298},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Contact Quantization: Quantum Mechanics = Parallel transport},
url = {http://eudml.org/doc/294288},
volume = {054},
year = {2018},
}

TY - JOUR
AU - Herczeg, G.
AU - Latini, E.
AU - Waldron, Andrew
TI - Contact Quantization: Quantum Mechanics = Parallel transport
JO - Archivum Mathematicum
PY - 2018
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 054
IS - 5
SP - 281
EP - 298
AB - Quantization together with quantum dynamics can be simultaneously formulated as the problem of finding an appropriate flat connection on a Hilbert bundle over a contact manifold. Contact geometry treats time, generalized positions and momenta as points on an underlying phase-spacetime and reduces classical mechanics to contact topology. Contact quantization describes quantum dynamics in terms of parallel transport for a flat connection; the ultimate goal being to also handle quantum systems in terms of contact topology. Our main result is a proof of local, formal gauge equivalence for a broad class of quantum dynamical systems—just as classical dynamics depends on choices of clocks, local quantum dynamics can be reduced to a problem of studying gauge transformations. We further show how to write quantum correlators in terms of parallel transport and in turn matrix elements for Hilbert bundle gauge transformations, and give the path integral formulation of these results. Finally, we show how to relate topology of the underlying contact manifold to boundary conditions for quantum wave functions.
LA - eng
KW - quantum mechanics; contact geometry; quantization; contact topology; flat connections; clock ambiguity
UR - http://eudml.org/doc/294288
ER -

References

top
  1. Albrecht, A., Iglesias, A., 10.1103/PhysRevD.77.063506, Phys. Rev. D 77 (2008), 063506; arXiv:0708.2743 [hep-th]; S. B. Gryb, Jacobi's Principle and the Disappearance of Time Phys. Rev. D 81 (2010), 044035, arXiv:0804.2900 [gr-qc]; S. B. Gryb and K. Thebault, The role of time in relational quantum theories Found. Phys. 42 (2012),1210–1238 arXiv:1110.2429 [gr-qc]. (2008) MR2996626DOI10.1103/PhysRevD.77.063506
  2. Batalin, I., Fradkin, E., Fradkina, T., Another version for operatorial quantization of dynamical systems with irreducible constraints, Nuclear Phys. B 314 (1989), 158–174, I.A. Batalin and I.V. Tyutin, Existence theorem for the effective gauge algebra in the generalized canonical formalism with abelian conversion of second-class constraints, Internat. J. Modern Phys. A 6 (1991), 3255–3282. (1989) MR0984074
  3. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D., 10.1007/BF00399745, Lett. Math. Phys. 1 (1977), 521–530. (1977) MR0674337DOI10.1007/BF00399745
  4. Bieliavsky, P., Cahen, M., Gutt, S., Rawnsley, J., Schwachhöfer, L., 10.1142/S021988780600117X, Int. J. Geom. Methods Mod. Phys. 3 (2006), 375–426, arXiv:math/0511194. (2006) MR2232865DOI10.1142/S021988780600117X
  5. Bruce, A.J., Contact structures and supersymmetric mechanics, arXiv:1108.5291 [math-ph]. 
  6. Čap, A., Slovák, J., [unknown], (2009) 
  7. Cattaneo, A.S., Felder, G., 10.1007/s002200000229, Comm. Math. Phys. 212 (2000), 591–611, arXiv:math/9902090. (2000) Zbl1038.53088MR1779159DOI10.1007/s002200000229
  8. Dupré, M.J., 10.1016/0022-1236(74)90035-4, J. Funct. Anal. 15 (1974), 244–278. (1974) MR0346541DOI10.1016/0022-1236(74)90035-4
  9. Fedosov, B.V., 10.4310/jdg/1214455536, J. Differential Geom. 40 (1994), 213–238. (1994) Zbl0812.53034MR1293654DOI10.4310/jdg/1214455536
  10. Fitzpatrick, S., 10.1016/j.geomphys.2011.07.011, J. Geom. Phys. 61 (2011), 2384–2399. (2011) MR2838515DOI10.1016/j.geomphys.2011.07.011
  11. Fox, D.J.F., Contact projective structures, Indiana Univ. Math. J. 54 (2005), 1547–1598, arXiv:math/0402332. (2005) Zbl1093.53083MR2189678
  12. Fradkin, E.S., Vilkovisky, G., 10.1016/0370-2693(75)90448-7, Phys. Lett. B 55 (1975), 224–226, I.A. Batalin and G.A. Vilkovisky, Relativistic s-matrix of dynamical systems with boson and fermion constraints, Phys. Lett. B 69 (1977), 309–312; E.S. Fradkin and T. Fradkina, Phys. Lett. B 72 (1978), 343–348; I. Batalin and E.S. Fradkin, La Rivista del Nuovo Cimento 9 (1986), 1–48. (1975) MR0411451DOI10.1016/0370-2693(75)90448-7
  13. Geiges, H., An Introduction to Contact Topology, Cambridge University Pres, 2008, and P. Ševera, Contact geometry in lagrangian mechanics, J. Geom. Phys. 29 (1999), 235–242; A. Bravetti, C.S. Lopez-Monsalvo and F. Nettel, Contact symmetries and Hamiltonian thermodynamics, Ann. Phys. 361 (2015), 377-400, arXiv:1409.7340; A. Bravetti, H. Cruz and D. Tapias, Contact Hamiltonian dynamics, arXiv:1604.08266[math-ph]. (2008) MR3388763
  14. Grigoriev, M.A., Lyakhovich, S.L., 10.1007/PL00005559, Comm. Math. Phys. 218 (2001), 437–457, hep-th/0003114. See also G. Barnich and M. Grigoriev, A. Semikhatov and I. Tipunin, Parent Field Theory and Unfolding in BRST First-Quantized Terms, 260, (2005), 147–181, hep-th/0406192. (2001) MR2175993DOI10.1007/PL00005559
  15. Gukov, S., Witten, E., Branes and quantization, Adv. Theor. Math. Phys. 13 (2009), 1445–1518, arXiv:0809.0305 [hep-th]. (2009) MR2672467
  16. Herczeg, G., Waldron, A., 10.1016/j.physletb.2018.04.008, Phys.Lett. B 781 (2018), 312–315, arXiv:1709.04557 [hep-th] . (2018) DOI10.1016/j.physletb.2018.04.008
  17. Kashiwara, M., 10.2977/prims/1195163179, Publ. Res. Inst. Math. Sci. 32 (1) (1996), 1–7. (1996) MR1384750DOI10.2977/prims/1195163179
  18. Kontsevich, M., 10.1023/B:MATH.0000027508.00421.bf, Lett. Math. Phys. 66 (2003), 157–216, arXiv:q-alg/9709040. (2003) Zbl1058.53065MR2062626DOI10.1023/B:MATH.0000027508.00421.bf
  19. Krýsl, S., 10.1016/j.difgeo.2013.10.007, Differential Geom. Appl. 33 (2014), 290–297, arXiv:1304.5704 [math.DG]. (2014) MR3159964DOI10.1016/j.difgeo.2013.10.007
  20. Małkiewicz, P., Miroszewski, A., 10.1103/PhysRevD.96.046003, Phys. Rev. D 96 (2017), 046003, arXiv:1706.00743 [gr-qc]. (2017) MR3852958DOI10.1103/PhysRevD.96.046003
  21. Manin, Y., Topics in Noncommutative Geometry, M. B. Porter Lectures, Princeton University Press, Princeton, NJ, 1991. (1991) Zbl0724.17007MR1095783
  22. Rajeev, S.G., 10.1016/j.aop.2007.05.001, Ann. Physics 323 (2008), 768–782. (2008) MR2404789DOI10.1016/j.aop.2007.05.001
  23. Schwarz, A.S., Superanalogs of symplectic and contact geometry and their applications to quantum field theory, Topics in statistical and theoretical physics, vol. 177, Amer. Math. Soc. Transl. Ser. 2, 1996, Adv. Math. Sci., 32, arXiv:hep-th/9406120, pp. 203–218. (1996) MR1409176
  24. Yoshioka, A., Contact Weyl manifold over a symplectic manifold. Lie groups, geometric structures and differential equations – one hundred years after Sophus Lie, Adv. Stud. Pure Math. 37 (2002), 459–493, A. Yoshioka, Il Nuov. Cim. 38C (2015), 173. (2002) MR1980911

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.