The exceptional set for Diophantine inequality with unlike powers of prime variables

Wenxu Ge; Feng Zhao

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 1, page 149-168
  • ISSN: 0011-4642

Abstract

top
Suppose that λ 1 , λ 2 , λ 3 , λ 4 are nonzero real numbers, not all negative, δ > 0 , 𝒱 is a well-spaced set, and the ratio λ 1 / λ 2 is algebraic and irrational. Denote by E ( 𝒱 , N , δ ) the number of v 𝒱 with v N such that the inequality | λ 1 p 1 2 + λ 2 p 2 3 + λ 3 p 3 4 + λ 4 p 4 5 - v | < v - δ has no solution in primes p 1 , p 2 , p 3 , p 4 . We show that E ( 𝒱 , N , δ ) N 1 + 2 δ - 1 / 72 + ε for any ε > 0 .

How to cite

top

Ge, Wenxu, and Zhao, Feng. "The exceptional set for Diophantine inequality with unlike powers of prime variables." Czechoslovak Mathematical Journal 68.1 (2018): 149-168. <http://eudml.org/doc/294289>.

@article{Ge2018,
abstract = {Suppose that $\lambda _1,\lambda _2,\lambda _3,\lambda _4$ are nonzero real numbers, not all negative, $\delta > 0$, $\mathcal \{V\}$ is a well-spaced set, and the ratio $\lambda _1/\lambda _2$ is algebraic and irrational. Denote by $E(\mathcal \{V\}, N,\delta )$ the number of $v\in \mathcal \{V\}$ with $v\le N$ such that the inequality \[ |\lambda \_1p\_1^2+\lambda \_2p\_2^3+\lambda \_3p\_3^4+\lambda \_4p\_4^5-v|<v^\{-\delta \} \] has no solution in primes $p_1$, $p_2$, $p_3$, $p_4$. We show that \[ E(\mathcal \{V\}, N,\delta )\ll N^\{1+2\delta -\{1\}/\{72\}+\varepsilon \} \] for any $\varepsilon >0$.},
author = {Ge, Wenxu, Zhao, Feng},
journal = {Czechoslovak Mathematical Journal},
keywords = {Davenport-Heilbronn method; prime varaible; exceptional set; Diophantine inequality},
language = {eng},
number = {1},
pages = {149-168},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The exceptional set for Diophantine inequality with unlike powers of prime variables},
url = {http://eudml.org/doc/294289},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Ge, Wenxu
AU - Zhao, Feng
TI - The exceptional set for Diophantine inequality with unlike powers of prime variables
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 1
SP - 149
EP - 168
AB - Suppose that $\lambda _1,\lambda _2,\lambda _3,\lambda _4$ are nonzero real numbers, not all negative, $\delta > 0$, $\mathcal {V}$ is a well-spaced set, and the ratio $\lambda _1/\lambda _2$ is algebraic and irrational. Denote by $E(\mathcal {V}, N,\delta )$ the number of $v\in \mathcal {V}$ with $v\le N$ such that the inequality \[ |\lambda _1p_1^2+\lambda _2p_2^3+\lambda _3p_3^4+\lambda _4p_4^5-v|<v^{-\delta } \] has no solution in primes $p_1$, $p_2$, $p_3$, $p_4$. We show that \[ E(\mathcal {V}, N,\delta )\ll N^{1+2\delta -{1}/{72}+\varepsilon } \] for any $\varepsilon >0$.
LA - eng
KW - Davenport-Heilbronn method; prime varaible; exceptional set; Diophantine inequality
UR - http://eudml.org/doc/294289
ER -

References

top
  1. Cook, R. J., Fox, A., 10.1112/S002557930001439X, Mathematika 48 (2001), 137-149. (2001) Zbl1035.11010MR1996366DOI10.1112/S002557930001439X
  2. Cook, R. J., Harman, G., 10.1216/rmjm/1181069409, Rocky Mt. J. Math. 36 (2006), 1153-1164. (2006) Zbl1140.11048MR2274889DOI10.1216/rmjm/1181069409
  3. Davenport, H., Analytic Methods for Diophantine Equations and Diophantine Inequalities, The University of Michigan, Fall Semester 1962, Ann Arbor Publishers, Ann Arbor (1963). (1963) Zbl1089.11500MR0159786
  4. Ge, W., Li, W., 10.1186/s13660-016-0983-6, J. Inequal. Appl. 2016 (2016), Paper No. 33, 8 pages. (2016) Zbl06547399MR3453618DOI10.1186/s13660-016-0983-6
  5. Harman, G., 10.1112/S0025579300015527, Mathematika 51 (2004), 83-96. (2004) Zbl1107.11043MR2220213DOI10.1112/S0025579300015527
  6. Harman, G., 10.1112/S0025579300010305, Mathematika 28 (1981), 249-254. (1981) Zbl0465.10029MR0645105DOI10.1112/S0025579300010305
  7. Kumchev, A. V., 10.1307/mmj/1156345592, Mich. Math. J. 54 (2006), 243-268. (2006) Zbl1137.11054MR2252758DOI10.1307/mmj/1156345592
  8. Languasco, A., Zaccagnini, A., 10.4064/aa159-4-4, Acta Arith. 159 (2013), 345-362. (2013) Zbl1330.11063MR3080797DOI10.4064/aa159-4-4
  9. Mu, Q., Lü, X. D., 10.16205/j.cnki.cama.2015.0028, Chin. Ann. Math., Ser. A 36 (2015), 303-312 Chinese. English summary. (2015) Zbl1340.11054MR3443464DOI10.16205/j.cnki.cama.2015.0028
  10. Ren, X., 10.1360/03ys0341, Sci. China Ser. A 48 (2005), 785-797. (2005) Zbl1100.11025MR2158973DOI10.1360/03ys0341
  11. Schmidt, W. M., 10.1007/978-3-540-38645-2, Lecture Notes in Mathematics 785, Springer, New York (1980). (1980) Zbl0421.10019MR0568710DOI10.1007/978-3-540-38645-2
  12. Vaughan, R. C., 10.1112/plms/s3-28.2.373, Proc. Lond. Math. Soc., III. Ser. 28 (1974), 373-384. (1974) Zbl0274.10045MR0337812DOI10.1112/plms/s3-28.2.373
  13. Vaughan, R. C., 10.1112/plms/s3-28.3.385, Proc. Lond. Math. Soc., III. Ser. 28 (1974), 385-401. (1974) Zbl0276.10031MR0337813DOI10.1112/plms/s3-28.3.385
  14. Yang, Y., Li, W., 10.1186/s13660-015-0817-y, J. Inequal. Appl. 2015 (2015), Paper No. 293, 9 pages. (2015) Zbl1353.11065MR3399256DOI10.1186/s13660-015-0817-y
  15. Zhao, L., 10.1112/plms/pdt072, Proc. Lond. Math. Soc. (3) 108 (2014), 1593-1622. (2014) Zbl06322154MR3218320DOI10.1112/plms/pdt072
  16. Zhao, L., 10.1307/mmj/1417799225, Mich. Math. J. 63 (2014), 763-779. (2014) MR3286670DOI10.1307/mmj/1417799225

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.