The exceptional set for Diophantine inequality with unlike powers of prime variables
Czechoslovak Mathematical Journal (2018)
- Volume: 68, Issue: 1, page 149-168
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGe, Wenxu, and Zhao, Feng. "The exceptional set for Diophantine inequality with unlike powers of prime variables." Czechoslovak Mathematical Journal 68.1 (2018): 149-168. <http://eudml.org/doc/294289>.
@article{Ge2018,
abstract = {Suppose that $\lambda _1,\lambda _2,\lambda _3,\lambda _4$ are nonzero real numbers, not all negative, $\delta > 0$, $\mathcal \{V\}$ is a well-spaced set, and the ratio $\lambda _1/\lambda _2$ is algebraic and irrational. Denote by $E(\mathcal \{V\}, N,\delta )$ the number of $v\in \mathcal \{V\}$ with $v\le N$ such that the inequality \[ |\lambda \_1p\_1^2+\lambda \_2p\_2^3+\lambda \_3p\_3^4+\lambda \_4p\_4^5-v|<v^\{-\delta \} \]
has no solution in primes $p_1$, $p_2$, $p_3$, $p_4$. We show that \[ E(\mathcal \{V\}, N,\delta )\ll N^\{1+2\delta -\{1\}/\{72\}+\varepsilon \} \]
for any $\varepsilon >0$.},
author = {Ge, Wenxu, Zhao, Feng},
journal = {Czechoslovak Mathematical Journal},
keywords = {Davenport-Heilbronn method; prime varaible; exceptional set; Diophantine inequality},
language = {eng},
number = {1},
pages = {149-168},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The exceptional set for Diophantine inequality with unlike powers of prime variables},
url = {http://eudml.org/doc/294289},
volume = {68},
year = {2018},
}
TY - JOUR
AU - Ge, Wenxu
AU - Zhao, Feng
TI - The exceptional set for Diophantine inequality with unlike powers of prime variables
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 1
SP - 149
EP - 168
AB - Suppose that $\lambda _1,\lambda _2,\lambda _3,\lambda _4$ are nonzero real numbers, not all negative, $\delta > 0$, $\mathcal {V}$ is a well-spaced set, and the ratio $\lambda _1/\lambda _2$ is algebraic and irrational. Denote by $E(\mathcal {V}, N,\delta )$ the number of $v\in \mathcal {V}$ with $v\le N$ such that the inequality \[ |\lambda _1p_1^2+\lambda _2p_2^3+\lambda _3p_3^4+\lambda _4p_4^5-v|<v^{-\delta } \]
has no solution in primes $p_1$, $p_2$, $p_3$, $p_4$. We show that \[ E(\mathcal {V}, N,\delta )\ll N^{1+2\delta -{1}/{72}+\varepsilon } \]
for any $\varepsilon >0$.
LA - eng
KW - Davenport-Heilbronn method; prime varaible; exceptional set; Diophantine inequality
UR - http://eudml.org/doc/294289
ER -
References
top- Cook, R. J., Fox, A., 10.1112/S002557930001439X, Mathematika 48 (2001), 137-149. (2001) Zbl1035.11010MR1996366DOI10.1112/S002557930001439X
- Cook, R. J., Harman, G., 10.1216/rmjm/1181069409, Rocky Mt. J. Math. 36 (2006), 1153-1164. (2006) Zbl1140.11048MR2274889DOI10.1216/rmjm/1181069409
- Davenport, H., Analytic Methods for Diophantine Equations and Diophantine Inequalities, The University of Michigan, Fall Semester 1962, Ann Arbor Publishers, Ann Arbor (1963). (1963) Zbl1089.11500MR0159786
- Ge, W., Li, W., 10.1186/s13660-016-0983-6, J. Inequal. Appl. 2016 (2016), Paper No. 33, 8 pages. (2016) Zbl06547399MR3453618DOI10.1186/s13660-016-0983-6
- Harman, G., 10.1112/S0025579300015527, Mathematika 51 (2004), 83-96. (2004) Zbl1107.11043MR2220213DOI10.1112/S0025579300015527
- Harman, G., 10.1112/S0025579300010305, Mathematika 28 (1981), 249-254. (1981) Zbl0465.10029MR0645105DOI10.1112/S0025579300010305
- Kumchev, A. V., 10.1307/mmj/1156345592, Mich. Math. J. 54 (2006), 243-268. (2006) Zbl1137.11054MR2252758DOI10.1307/mmj/1156345592
- Languasco, A., Zaccagnini, A., 10.4064/aa159-4-4, Acta Arith. 159 (2013), 345-362. (2013) Zbl1330.11063MR3080797DOI10.4064/aa159-4-4
- Mu, Q., Lü, X. D., 10.16205/j.cnki.cama.2015.0028, Chin. Ann. Math., Ser. A 36 (2015), 303-312 Chinese. English summary. (2015) Zbl1340.11054MR3443464DOI10.16205/j.cnki.cama.2015.0028
- Ren, X., 10.1360/03ys0341, Sci. China Ser. A 48 (2005), 785-797. (2005) Zbl1100.11025MR2158973DOI10.1360/03ys0341
- Schmidt, W. M., 10.1007/978-3-540-38645-2, Lecture Notes in Mathematics 785, Springer, New York (1980). (1980) Zbl0421.10019MR0568710DOI10.1007/978-3-540-38645-2
- Vaughan, R. C., 10.1112/plms/s3-28.2.373, Proc. Lond. Math. Soc., III. Ser. 28 (1974), 373-384. (1974) Zbl0274.10045MR0337812DOI10.1112/plms/s3-28.2.373
- Vaughan, R. C., 10.1112/plms/s3-28.3.385, Proc. Lond. Math. Soc., III. Ser. 28 (1974), 385-401. (1974) Zbl0276.10031MR0337813DOI10.1112/plms/s3-28.3.385
- Yang, Y., Li, W., 10.1186/s13660-015-0817-y, J. Inequal. Appl. 2015 (2015), Paper No. 293, 9 pages. (2015) Zbl1353.11065MR3399256DOI10.1186/s13660-015-0817-y
- Zhao, L., 10.1112/plms/pdt072, Proc. Lond. Math. Soc. (3) 108 (2014), 1593-1622. (2014) Zbl06322154MR3218320DOI10.1112/plms/pdt072
- Zhao, L., 10.1307/mmj/1417799225, Mich. Math. J. 63 (2014), 763-779. (2014) MR3286670DOI10.1307/mmj/1417799225
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.