On stability of linear neutral differential equations with variable delays
Leonid Berezansky; Elena Braverman
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 3, page 863-891
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBerezansky, Leonid, and Braverman, Elena. "On stability of linear neutral differential equations with variable delays." Czechoslovak Mathematical Journal 69.3 (2019): 863-891. <http://eudml.org/doc/294292>.
@article{Berezansky2019,
abstract = {We present a review of known stability tests and new explicit exponential stability conditions for the linear scalar neutral equation with two delays \[ \dot\{x\}(t)-a(t)\dot\{x\}(g(t))+b(t)x(h(t))=0, \]
where \[ |a(t)|<1, \quad b(t)\ge 0, \quad h(t)\le t, \quad g(t)\le t, \]
and for its generalizations, including equations with more than two delays, integro-differential equations and equations with a distributed delay.},
author = {Berezansky, Leonid, Braverman, Elena},
journal = {Czechoslovak Mathematical Journal},
keywords = {neutral equation; exponential stability; solution estimate; integro-differential equation; distributed delay},
language = {eng},
number = {3},
pages = {863-891},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On stability of linear neutral differential equations with variable delays},
url = {http://eudml.org/doc/294292},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Berezansky, Leonid
AU - Braverman, Elena
TI - On stability of linear neutral differential equations with variable delays
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 3
SP - 863
EP - 891
AB - We present a review of known stability tests and new explicit exponential stability conditions for the linear scalar neutral equation with two delays \[ \dot{x}(t)-a(t)\dot{x}(g(t))+b(t)x(h(t))=0, \]
where \[ |a(t)|<1, \quad b(t)\ge 0, \quad h(t)\le t, \quad g(t)\le t, \]
and for its generalizations, including equations with more than two delays, integro-differential equations and equations with a distributed delay.
LA - eng
KW - neutral equation; exponential stability; solution estimate; integro-differential equation; distributed delay
UR - http://eudml.org/doc/294292
ER -
References
top- Agarwal, R. P., Grace, S. R., 10.1016/S0895-7177(00)00056-X, Math. Comput. Modelling 31 (2000), 9-15. (2000) Zbl1042.34569MR1761480DOI10.1016/S0895-7177(00)00056-X
- Anokhin, A., Berezansky, L., Braverman, E., 10.1006/jmaa.1995.1275, J. Math. Anal. Appl. 193 (1995), 923-941. (1995) Zbl0837.34076MR1341049DOI10.1006/jmaa.1995.1275
- Ardjouni, A., Djoudi, A., 10.7494/OpMath.2012.32.1.5, Opusc. Math. 32 (2012), 5-19. (2012) Zbl1254.34110MR2852465DOI10.7494/OpMath.2012.32.1.5
- Azbelev, N. V., Simonov, P. M., 10.1201/9781482264807, Stability and Control: Theory, Methods and Applications 20, Taylor and Francis, London (2003). (2003) Zbl1049.34090MR1965019DOI10.1201/9781482264807
- Berezansky, L. M., Development of N. V. Azbelev’s -method in problems of the stability of solutions of linear functional-differential equations, Differ. Equations 22 (1986), 521-529 translation from Differ. Uravn. 22 1986 739-750 Russian. (1986) Zbl0612.34069MR0846501
- Berezansky, L., Braverman, E., 10.1016/S0022-247X(03)00502-X, J. Math. Anal. Appl. 286 (2003), 601-617. (2003) Zbl1055.34123MR2008851DOI10.1016/S0022-247X(03)00502-X
- Berezansky, L., Braverman, E., 10.1016/j.jmaa.2005.03.103, J. Math. Anal. Appl. 314 (2006), 391-411. (2006) Zbl1101.34057MR2185238DOI10.1016/j.jmaa.2005.03.103
- Berezansky, L., Braverman, E., 10.1016/j.jmaa.2006.10.016, J. Math. Anal. Appl. 332 (2007), 246-264. (2007) Zbl1118.34069MR2319658DOI10.1016/j.jmaa.2006.10.016
- Berezansky, L., Braverman, E., 10.1016/j.mcm.2007.10.003, Math. Comput. Modelling 48 (2008), 287-304. (2008) Zbl1145.45303MR2431340DOI10.1016/j.mcm.2007.10.003
- Berezansky, L., Braverman, E., 10.1016/j.na.2009.01.147, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 2614-2624. (2009) Zbl1208.34115MR2532787DOI10.1016/j.na.2009.01.147
- Burton, T. A., Stability by Fixed Point Theory for Functional Differential Equations, Dover Publications, Mineola (2006). (2006) Zbl1160.34001MR2281958
- Cahlon, B., Schmidt, D., An algorithmic stability test for neutral first order delay differential equations with commensurate delays, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 23 (2016), 1-26. (2016) Zbl1333.34112MR3453288
- Gil', M. I., 10.2991/978-94-6239-091-1, Atlantis Studies in Differential Equations 3, Atlantis Press, Amsterdam (2014). (2014) Zbl1315.34002MR3289984DOI10.2991/978-94-6239-091-1
- Gopalsamy, K., A simple stability criterion for linear neutral differential systems, Funkc. Ekvacioj, Ser. Int. 28 (1985), 33-38. (1985) Zbl0641.34069MR0803401
- Gopalsamy, K., 10.1007/978-94-015-7920-9, Mathematics and Its Applications 74, Kluwer Academic Publishers, Dordrecht (1992). (1992) Zbl0752.34039MR1163190DOI10.1007/978-94-015-7920-9
- Gusarenko, S. A., Domoshnitsky, A. I., Asymptotic and oscillation properties of first-order linear scalar functional-differential equations, Differ. Equations 25 (1989), 1480-1491 translation from Differ. Uravn. 25 1989 2090-2103 Russian. (1989) Zbl0726.45011MR1044645
- Györi, I., Ladas, G., Oscillation Theory of Delay Differential Equations: With Applications, Clarendon Press, Oxford (1991). (1991) Zbl0780.34048MR1168471
- Jin, C., Luo, J., 10.1090/S0002-9939-07-09089-2, Proc. Am. Math. Soc. 136 (2008), 909-918. (2008) Zbl1136.34059MR2361863DOI10.1090/S0002-9939-07-09089-2
- Kolmanovskii, V. B., Myshkis, A., 10.1007/978-94-017-1965-0, Mathematics and Its Applications 463, Kluwer Academic Publishers, Dordrecht (1999). (1999) Zbl0917.34001MR1680144DOI10.1007/978-94-017-1965-0
- Kolmanovskii, V. B., Nosov, V. R., 10.1016/S0076-5392(08)62051-2, Mathematics in Science and Engineering 180, Academic Press, London (1986). (1986) Zbl0593.34070MR0860947DOI10.1016/S0076-5392(08)62051-2
- Kuang, Y., 10.1016/s0076-5392(08)x6164-8, Mathematics in Science and Engineering 191, Academic Press, Boston (1993). (1993) Zbl0777.34002MR1218880DOI10.1016/s0076-5392(08)x6164-8
- Liu, G., Yan, J., 10.1016/j.cnsns.2013.08.035, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 1035-1041. (2014) MR3119279DOI10.1016/j.cnsns.2013.08.035
- Raffoul, Y. N., 10.1016/j.mcm.2004.10.001, Math. Comput. Modelling 40 (2004), 691-700. (2004) Zbl1083.34536MR2106161DOI10.1016/j.mcm.2004.10.001
- Shaikhet, L., 10.1007/978-3-319-00101-2, Springer, Cham (2013). (2013) Zbl1277.34003MR3076210DOI10.1007/978-3-319-00101-2
- Tang, X. H., Zou, X., 10.1017/S0013091501000396, Proc. Edinb. Math. Soc., II. Ser. 45 (2002), 333-347. (2002) Zbl1024.34070MR1912643DOI10.1017/S0013091501000396
- Wang, X., Liao, L., 10.1016/S0022-247X(03)00021-0, J. Math. Anal. Appl. 279 (2003), 326-338. (2003) Zbl1054.34128MR1970509DOI10.1016/S0022-247X(03)00021-0
- Wu, J., Yu, J. S., Convergence in nonautonomous scalar neutral equations, Dyn. Syst. Appl. 4 (1995), 279-290. (1995) Zbl0830.34066MR1338949
- Ye, H., Gao, G., 10.1006/jmaa.2000.7391, J. Math. Anal. Appl. 258 (2001), 556-564. (2001) Zbl0991.34061MR1835558DOI10.1006/jmaa.2000.7391
- Yu, J. S., 10.1006/jmaa.1996.0416, J. Math. Anal. Appl. 203 (1996), 850-860. (1996) Zbl0866.34061MR1417134DOI10.1006/jmaa.1996.0416
- Zhao, D., 10.1186/1687-1847-2011-48, Adv. Difference Equ. 2011 (2011), Paper No. 48, 11 pages. (2011) Zbl1282.34076MR2891788DOI10.1186/1687-1847-2011-48
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.