Existence of Periodic Solutions for Nonlinear Neutral Dynamic Equations with Functional Delay on a Time Scale
Abdelouaheb Ardjouni; Ahcène Djoudi
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2013)
- Volume: 52, Issue: 1, page 5-19
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topArdjouni, Abdelouaheb, and Djoudi, Ahcène. "Existence of Periodic Solutions for Nonlinear Neutral Dynamic Equations with Functional Delay on a Time Scale." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 52.1 (2013): 5-19. <http://eudml.org/doc/260734>.
@article{Ardjouni2013,
abstract = {Let $\mathbb \{T\}$ be a periodic time scale. The purpose of this paper is to use a modification of Krasnoselskii’s fixed point theorem due to Burton to prove the existence of periodic solutions on time scale of the nonlinear dynamic equation with variable delay $x^\{\triangle \}\left( t\right) =-a\left( t\right) h\left( x^\{\sigma \}\left( t\right) \right) +c(t)x^\{\widetilde\{\triangle \}\}\left( t-r\left( t\right) \right) +G\left( t,x\left( t\right) ,x\left( t-r\left( t\right) \right) \right)$, $t\in \mathbb \{T\}$, where $f^\{\triangle \}$ is the $\triangle $-derivative on $\mathbb \{T\}$ and $f^\{\widetilde\{\triangle \}\}$ is the $\triangle $-derivative on $(id-r)(\mathbb \{T\})$. We invert the given equation to obtain an equivalent integral equation from which we define a fixed point mapping written as a sum of a large contraction and a compact map. We show that such maps fit very nicely into the framework of Krasnoselskii–Burton’s fixed point theorem so that the existence of periodic solutions is concluded. The results obtained here extend the work of Yankson [Yankson, E.: Existence of periodic solutions for totally nonlinear neutral differential equations with functional delay Opuscula Mathematica 32, 3 (2012), 617–627.].},
author = {Ardjouni, Abdelouaheb, Djoudi, Ahcène},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {fixed point; large contraction; periodic solutions; time scales; nonlinear neutral dynamic equations; fixed point; large contraction; periodic solutions; time scales; nonlinear neutral dynamic equations},
language = {eng},
number = {1},
pages = {5-19},
publisher = {Palacký University Olomouc},
title = {Existence of Periodic Solutions for Nonlinear Neutral Dynamic Equations with Functional Delay on a Time Scale},
url = {http://eudml.org/doc/260734},
volume = {52},
year = {2013},
}
TY - JOUR
AU - Ardjouni, Abdelouaheb
AU - Djoudi, Ahcène
TI - Existence of Periodic Solutions for Nonlinear Neutral Dynamic Equations with Functional Delay on a Time Scale
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2013
PB - Palacký University Olomouc
VL - 52
IS - 1
SP - 5
EP - 19
AB - Let $\mathbb {T}$ be a periodic time scale. The purpose of this paper is to use a modification of Krasnoselskii’s fixed point theorem due to Burton to prove the existence of periodic solutions on time scale of the nonlinear dynamic equation with variable delay $x^{\triangle }\left( t\right) =-a\left( t\right) h\left( x^{\sigma }\left( t\right) \right) +c(t)x^{\widetilde{\triangle }}\left( t-r\left( t\right) \right) +G\left( t,x\left( t\right) ,x\left( t-r\left( t\right) \right) \right)$, $t\in \mathbb {T}$, where $f^{\triangle }$ is the $\triangle $-derivative on $\mathbb {T}$ and $f^{\widetilde{\triangle }}$ is the $\triangle $-derivative on $(id-r)(\mathbb {T})$. We invert the given equation to obtain an equivalent integral equation from which we define a fixed point mapping written as a sum of a large contraction and a compact map. We show that such maps fit very nicely into the framework of Krasnoselskii–Burton’s fixed point theorem so that the existence of periodic solutions is concluded. The results obtained here extend the work of Yankson [Yankson, E.: Existence of periodic solutions for totally nonlinear neutral differential equations with functional delay Opuscula Mathematica 32, 3 (2012), 617–627.].
LA - eng
KW - fixed point; large contraction; periodic solutions; time scales; nonlinear neutral dynamic equations; fixed point; large contraction; periodic solutions; time scales; nonlinear neutral dynamic equations
UR - http://eudml.org/doc/260734
ER -
References
top- Adıvar, M., Raffoul, Y. N., Existence of periodic solutions in totally nonlinear delay dynamic equations, Electronic Journal of Qualitative Theory of Differential Equations 2009, 1 (2009), 1–20. (2009) Zbl1195.34138MR2558826
- Ardjouni, A., Djoudi, A., 10.1016/j.cnsns.2011.11.026, Commun Nonlinear Sci Numer Simulat 17 (2012), 3061–3069. (2012) Zbl1254.34128MR2880475DOI10.1016/j.cnsns.2011.11.026
- Ardjouni, A., Djoudi, A., Periodic solutions in totally nonlinear dynamic equations with functional delay on a time scale, Rend. Sem. Mat. Univ. Politec. Torino 68, 4 (2010), 349–359. (2010) Zbl1226.34062MR2815207
- Atici, F. M., Guseinov, G. Sh., Kaymakcalan, B., Stability criteria for dynamic equations on time scales with periodic coefficients, In: Proceedings of the International Confernce on Dynamic Systems and Applications 3, 3 (1999), 43–48. (1999) MR1864659
- Bohner, M., Peterson, A., Dynamic Equations on Time Scales, An Introduction with Applications, Birkhäuser, Boston, 2001. (2001) Zbl0978.39001MR1843232
- Bohner, M., Peterson, A., Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003. (2003) Zbl1025.34001MR1962542
- Burton, T. A., Liapunov functionals, fixed points and stability by Krasnoselskii’s theorem, Nonlinear Stud. 9, 2 (2002), 181–190. (2002) Zbl1084.47522MR1898587
- Burton, T. A., Stability by Fixed Point Theory for Functional Differential Equations, Dover, New York, 2006. (2006) Zbl1160.34001MR2281958
- Deham, H., Djoudi, A., Periodic solutions for nonlinear differential equation with functional delay, Georgian Mathematical Journal 15, 4 (2008), 635–642. (2008) Zbl1171.47061MR2494962
- Deham, H., Djoudi, A., Existence of periodic solutions for neutral nonlinear differential equations with variable delay, Electronic Journal of Differential Equations 127, (2010), 1–8. (2010) Zbl1203.34110MR2685037
- Hilger, S., Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph. D. thesis, Universität Würzburg, Würzburg, 1988. (1988) Zbl0695.34001
- Kaufmann, E. R., Raffoul, Y. N., 10.1016/j.jmaa.2006.01.063, J. Math. Anal. Appl. 319 32, 1 (2006), 315–325. (2006) Zbl1096.34057MR2217863DOI10.1016/j.jmaa.2006.01.063
- Kaufmann, E. R., Raffoul, Y. N., Periodicity and stability in neutral nonlinear dynamic equation with functional delay on a time scale, Electronic Journal of Differential Equations 27 (2007), 1–12. (2007) MR2299581
- Smart, D. R., Fixed point theorems, Cambridge Tracts in Mathematics 66, Cambridge University Press, London–New York, 1974. (1974) Zbl0297.47042MR0467717
- Yankson, E., 10.7494/OpMath.2012.32.3.617, Opuscula Mathematica 32, 3 (2012), 617–627. (2012) Zbl1248.34105MR2945798DOI10.7494/OpMath.2012.32.3.617
Citations in EuDML Documents
top- Leonid Berezansky, Elena Braverman, On stability of linear neutral differential equations with variable delays
- Mimia Benhadri, Tomás Caraballo, New sufficient conditions for global asymptotic stability of a kind of nonlinear neutral differential equations
- Mouataz Billah MESMOULI, Abdelouaheb Ardjouni, Ahcene Djoudi, Study of Stability in Nonlinear Neutral Differential Equations with Variable Delay Using Krasnoselskii–Burton’s Fixed Point
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.