Total blow-up of a quasilinear heat equation with slow-diffusion for non-decaying initial data

Amy Poh Ai Ling; Masahiko Shimojō

Mathematica Bohemica (2019)

  • Volume: 144, Issue: 3, page 287-297
  • ISSN: 0862-7959

Abstract

top
We consider solutions of quasilinear equations u t = Δ u m + u p in N with the initial data u 0 satisfying 0 < u 0 < M and lim | x | u 0 ( x ) = M for some constant M > 0 . It is known that if 0 < m < p with p > 1 , the blow-up set is empty. We find solutions u that blow up throughout N when m > p > 1 .

How to cite

top

Ling, Amy Poh Ai, and Shimojō, Masahiko. "Total blow-up of a quasilinear heat equation with slow-diffusion for non-decaying initial data." Mathematica Bohemica 144.3 (2019): 287-297. <http://eudml.org/doc/294294>.

@article{Ling2019,
abstract = {We consider solutions of quasilinear equations $u_\{t\}=\Delta u^\{m\} + u^\{p\}$ in $\mathbb \{R\}^\{N\}$ with the initial data $u_\{0\}$ satisfying $0 < u_\{0\}< M$ and $\lim _\{|x|\rightarrow \infty \}u_\{0\}(x)=M$ for some constant $M>0$. It is known that if $0<m<p$ with $p>1$, the blow-up set is empty. We find solutions $u$ that blow up throughout $\mathbb \{R\}^\{N\}$ when $m>p>1$.},
author = {Ling, Amy Poh Ai, Shimojō, Masahiko},
journal = {Mathematica Bohemica},
keywords = {quasilinear heat equation; total blow-up; blow-up only at space infinity},
language = {eng},
number = {3},
pages = {287-297},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Total blow-up of a quasilinear heat equation with slow-diffusion for non-decaying initial data},
url = {http://eudml.org/doc/294294},
volume = {144},
year = {2019},
}

TY - JOUR
AU - Ling, Amy Poh Ai
AU - Shimojō, Masahiko
TI - Total blow-up of a quasilinear heat equation with slow-diffusion for non-decaying initial data
JO - Mathematica Bohemica
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 144
IS - 3
SP - 287
EP - 297
AB - We consider solutions of quasilinear equations $u_{t}=\Delta u^{m} + u^{p}$ in $\mathbb {R}^{N}$ with the initial data $u_{0}$ satisfying $0 < u_{0}< M$ and $\lim _{|x|\rightarrow \infty }u_{0}(x)=M$ for some constant $M>0$. It is known that if $0<m<p$ with $p>1$, the blow-up set is empty. We find solutions $u$ that blow up throughout $\mathbb {R}^{N}$ when $m>p>1$.
LA - eng
KW - quasilinear heat equation; total blow-up; blow-up only at space infinity
UR - http://eudml.org/doc/294294
ER -

References

top
  1. Galaktionov, V. A., Asymptotic behavior of unbounded solutions of the nonlinear equation u t = ( u σ u x ) x + u β near a “singular” point, Sov. Math., Dokl. 33 (1986), 840-844 translated from Dokl. Akad. Nauk SSSR 288 1986 1293-1297. (1986) Zbl0629.35061MR0852454
  2. Galaktionov, V. A., Kurdyumov, S. P., Mikhailov, A. P., Samarskii, A. A., Unbounded solutions of the Cauchy problem for the parabolic equation u t = ( u σ u ) + u β , Sov. Phys., Dokl. 25 (1980), 458-459 translated from Dokl. Akad. Nauk SSSR 252 1980 1362-1364. (1980) MR0581597
  3. Giga, Y., Umeda, N., 10.5269/bspm.v23i1-2.7450, Bol. Soc. Parana. Mat. (3) 23 (2005), 9-28 correction ibid. 24 2006 19-24. (2005) Zbl1173.35531MR2242285DOI10.5269/bspm.v23i1-2.7450
  4. Giga, Y., Umeda, N., 10.1016/j.jmaa.2005.05.007, J. Math. Anal. Appl. 316 (2006), 538-555. (2006) Zbl1106.35029MR2206688DOI10.1016/j.jmaa.2005.05.007
  5. Lacey, A. A., 10.1017/S0308210500025609, Proc. R. Soc. Edinb., Sect. A 98 (1984), 183-202. (1984) Zbl0556.35077MR0765494DOI10.1017/S0308210500025609
  6. Ladyženskaja, O. A., Solonnikov, V. A., Ural'ceva, N. N., 10.1090/mmono/023, Translations of Mathematical Monographs 23. AMS, Providence (1968). (1968) Zbl0174.15403MR0241822DOI10.1090/mmono/023
  7. Mochizuki, K., Suzuki, R., 10.2969/jmsj/04430485, J. Math. Soc. Japan 44 (1992), 485-504. (1992) Zbl0805.35065MR1167379DOI10.2969/jmsj/04430485
  8. Oleinik, O. A., Kalašinkov, A. S., Chou, Y.-L., The Cauchy problem and boundary problems for equations of the type of non-stationary filtration, Izv. Akad. Nauk SSSR, Ser. Mat. 22 (1958), 667-704 Russian. (1958) Zbl0093.10302MR0099834
  9. Samarskii, A. A., Galaktionov, V. A., Kurdyumov, S. P., Mikhailov, A. P., 10.1515/9783110889864.535, De Gruyter Expositions in Mathematics 19. Walter de Gruyter, Berlin (1995). (1995) Zbl1020.35001MR1330922DOI10.1515/9783110889864.535
  10. Seki, Y., 10.1016/j.jmaa.2007.05.033, J. Math. Anal. Appl. 338 (2008), 572-587. (2008) Zbl1144.35030MR2386440DOI10.1016/j.jmaa.2007.05.033
  11. Seki, Y., Umeda, N., Suzuki, R., 10.1017/S0308210506000801, Proc. R. Soc. Edinb., Sect. A, Math. 138 (2008), 379-405. (2008) Zbl1167.35393MR2406697DOI10.1017/S0308210506000801
  12. Shimojō, M., 10.1215/kjm/1250271415, J. Math. Kyoto Univ. 48 (2008), 339-361. (2008) Zbl1184.35078MR2436740DOI10.1215/kjm/1250271415
  13. Suzuki, R., 10.2977/prims/1195169661, Publ. Res. Inst. Math. Sci. 27 (1991), 375-398. (1991) Zbl0789.35024MR1121244DOI10.2977/prims/1195169661

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.