Automorphism group of representation ring of the weak Hopf algebra
Czechoslovak Mathematical Journal (2018)
- Volume: 68, Issue: 4, page 1131-1148
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSu, Dong, and Yang, Shilin. "Automorphism group of representation ring of the weak Hopf algebra $\widetilde{H_8}$." Czechoslovak Mathematical Journal 68.4 (2018): 1131-1148. <http://eudml.org/doc/294302>.
@article{Su2018,
abstract = {Let $H_8$ be the unique noncommutative and noncocommutative eight dimensional semi-simple Hopf algebra. We first construct a weak Hopf algebra $\widetilde\{H_8\}$ based on $H_8$, then we investigate the structure of the representation ring of $\widetilde\{H_8\}$. Finally, we prove that the automorphism group of $r(\widetilde\{H_8\})$ is just isomorphic to $D_6$, where $D_6$ is the dihedral group with order 12.},
author = {Su, Dong, Yang, Shilin},
journal = {Czechoslovak Mathematical Journal},
keywords = {automorphism group; representation ring; weak Hopf algebra},
language = {eng},
number = {4},
pages = {1131-1148},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Automorphism group of representation ring of the weak Hopf algebra $\widetilde\{H_8\}$},
url = {http://eudml.org/doc/294302},
volume = {68},
year = {2018},
}
TY - JOUR
AU - Su, Dong
AU - Yang, Shilin
TI - Automorphism group of representation ring of the weak Hopf algebra $\widetilde{H_8}$
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 4
SP - 1131
EP - 1148
AB - Let $H_8$ be the unique noncommutative and noncocommutative eight dimensional semi-simple Hopf algebra. We first construct a weak Hopf algebra $\widetilde{H_8}$ based on $H_8$, then we investigate the structure of the representation ring of $\widetilde{H_8}$. Finally, we prove that the automorphism group of $r(\widetilde{H_8})$ is just isomorphic to $D_6$, where $D_6$ is the dihedral group with order 12.
LA - eng
KW - automorphism group; representation ring; weak Hopf algebra
UR - http://eudml.org/doc/294302
ER -
References
top- Aizawa, N., Isaac, P. S., 10.1063/1.1616999, J. Math. Phys. 44 (2003), 5250-5267. (2003) Zbl1063.16041MR2014859DOI10.1063/1.1616999
- Alperin, R. C., 10.1016/0022-4049(79)90027-6, J. Pure Appl. Algebra 15 (1979), 109-115. (1979) Zbl0415.13006MR0535179DOI10.1016/0022-4049(79)90027-6
- Chen, H.-X., 10.1016/j.jpaa.2013.01.013, J. Pure Appl. Algebra 217 (2013), 1870-1887. (2013) Zbl1292.16021MR3053522DOI10.1016/j.jpaa.2013.01.013
- Chen, H., Oystaeyen, F. Van, Zhang, Y., 10.1090/S0002-9939-2013-11823-X, Proc. Am. Math. Soc. 142 (2014), 765-775. (2014) Zbl1309.16021MR3148512DOI10.1090/S0002-9939-2013-11823-X
- Cheng, D., The structure of weak quantum groups corresponding to Sweedler algebra, JP J. Algebra Number Theory Appl. 16 (2010), 89-99. (2010) Zbl1217.16028MR2662950
- Cheng, D., Li, F., 10.1080/00927870802243499, Commun. Algebra 37 (2009), 729-742. (2009) Zbl1166.16018MR2503175DOI10.1080/00927870802243499
- Dicks, W., 10.5565/publmat_27183_04, Publ. Secc. Mat. Univ. Autòn. Barc. 27 (1983), 155-162. (1983) Zbl0593.13005MR0763864DOI10.5565/publmat_27183_04
- Drensky, V., Yu, J.-T., 10.1016/j.jalgebra.2008.08.026, J. Algebra 321 (2009), 292-302. (2009) Zbl1157.13015MR2469362DOI10.1016/j.jalgebra.2008.08.026
- Han, J., Su, Y., Automorphism groups of Witt algebras, Available at ArXiv 1502.0144v1 [math.QA].
- Jia, T., Zhao, R., Li, L., 10.1007/s11464-016-0565-4, Front. Math. China 11 (2016), 921-932. (2016) Zbl1372.16038MR3531037DOI10.1007/s11464-016-0565-4
- Li, F., 10.1006/jabr.1998.7491, J. Algebra 208 (1998), 72-100. (1998) Zbl0916.16020MR1643979DOI10.1006/jabr.1998.7491
- Li, L., Zhang, Y., 10.1090/conm/585/11618, Hopf Algebras and Tensor Categories Contemporary Mathematics 585, Proc. of the International Conf., University of Almería, Almería, Amer. Math. Soc., Providence N. Andruskiewitsch et al. (2013), 275-288. (2013) Zbl1309.19001MR3077243DOI10.1090/conm/585/11618
- Masuoka, A., 10.1007/BF02762089, Isr. J. Math. 92 (1995), 361-373. (1995) Zbl0839.16036MR1357764DOI10.1007/BF02762089
- Montgomery, S., 10.1090/cbms/082, Conference on Hopf algebras and Their Actions on Rings, Chicago, 1992, CBMS Regional Conference Series in Mathematics 82, AMS, Providence (1993). (1993) Zbl0793.16029MR1243637DOI10.1090/cbms/082
- Ştefan, D., 10.1006/jabr.1998.7602, J. Algebra 211 (1999), 343-361. (1999) Zbl0918.16031MR1656583DOI10.1006/jabr.1998.7602
- Sweedler, M. E., Hopf Algebras, Mathematics Lecture Note Series, W. A. Benjamin, New York (1969). (1969) Zbl0194.32901MR0252485
- Kulk, W. van der, On polynomial rings in two variables, Nieuw Arch. Wiskd., III. Ser. 1 (1953), 33-41. (1953) Zbl0050.26002MR0054574
- Yang, S., 10.1142/S021949880400071X, J. Algebra Appl. 3 (2004), 91-104. (2004) Zbl1080.16043MR2047638DOI10.1142/S021949880400071X
- Yang, S., 10.1063/1.1933063, J. Math. Phys. 46 (2005), 073502, 18 pages. (2005) Zbl1110.16047MR2153558DOI10.1063/1.1933063
- Yu, J.-T., Recognizing automorphisms of polynomial algebras, Mat. Contemp. 14 (1998), 215-225. (1998) Zbl0930.13016MR1663646
- Zhao, K., Automophisms of the binary polynomial algebras on integer rings, Chinese Ann. Math. Ser. A 4 (1995), 448-494 Chinese. (1995)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.