Automorphism group of green algebra of weak Hopf algebra corresponding to Sweedler Hopf algebra
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 1, page 101-115
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topCao, Liufeng, Su, Dong, and Yao, Hua. "Automorphism group of green algebra of weak Hopf algebra corresponding to Sweedler Hopf algebra." Czechoslovak Mathematical Journal 73.1 (2023): 101-115. <http://eudml.org/doc/299535>.
@article{Cao2023,
abstract = {Let $r(\mathfrak \{w\}^0_2)$ be the Green ring of the weak Hopf algebra $\mathfrak \{w\}^0_2$ corresponding to Sweedler’s 4-dimensional Hopf algebra $H_2$, and let $\{\rm Aut\}(R(\mathfrak \{w\}^0_2))$ be the automorphism group of the Green algebra $R(\mathfrak \{w\}^0_2)=r(\mathfrak \{w\}^0_2)\otimes _\mathbb \{Z\}\mathbb \{C\}$. We show that the quotient group $\{\rm Aut\}(R(\mathfrak \{w\}^0_2))/C_2\cong S_3$, where $C_2$ contains the identity map and is isomorphic to the infinite group $(\mathbb \{C\}^*,\times )$ and $S_3$ is the symmetric group of order 6.},
author = {Cao, Liufeng, Su, Dong, Yao, Hua},
journal = {Czechoslovak Mathematical Journal},
keywords = {Green algebra; automorphism group; weak Hopf algebra},
language = {eng},
number = {1},
pages = {101-115},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Automorphism group of green algebra of weak Hopf algebra corresponding to Sweedler Hopf algebra},
url = {http://eudml.org/doc/299535},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Cao, Liufeng
AU - Su, Dong
AU - Yao, Hua
TI - Automorphism group of green algebra of weak Hopf algebra corresponding to Sweedler Hopf algebra
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 1
SP - 101
EP - 115
AB - Let $r(\mathfrak {w}^0_2)$ be the Green ring of the weak Hopf algebra $\mathfrak {w}^0_2$ corresponding to Sweedler’s 4-dimensional Hopf algebra $H_2$, and let ${\rm Aut}(R(\mathfrak {w}^0_2))$ be the automorphism group of the Green algebra $R(\mathfrak {w}^0_2)=r(\mathfrak {w}^0_2)\otimes _\mathbb {Z}\mathbb {C}$. We show that the quotient group ${\rm Aut}(R(\mathfrak {w}^0_2))/C_2\cong S_3$, where $C_2$ contains the identity map and is isomorphic to the infinite group $(\mathbb {C}^*,\times )$ and $S_3$ is the symmetric group of order 6.
LA - eng
KW - Green algebra; automorphism group; weak Hopf algebra
UR - http://eudml.org/doc/299535
ER -
References
top- Aizawa, N., Isaac, P. S., 10.1063/1.1616999, J. Math. Phys. 44 (2003), 5250-5267. (2003) Zbl1063.16041MR2014859DOI10.1063/1.1616999
- Bardakov, V. G., Neshchadim, M. V., Sosnovsky, Y. V., 10.1016/j.jalgebra.2011.03.038, J. Algebra 362 (2012), 201-220. (2012) Zbl1269.16033MR2921639DOI10.1016/j.jalgebra.2011.03.038
- Beattie, M., Dăscălescu, S., Grünenfelder, L., 10.1006/jabr.1999.8148, J. Algebra 225 (2000), 743-770. (2000) Zbl0948.16026MR1741560DOI10.1006/jabr.1999.8148
- Chen, H., Oystaeyen, F. Van, Zhang, Y., 10.1090/S0002-9939-2013-11823-X, Proc. Am. Math. Soc. 142 (2014), 765-775. (2014) Zbl1309.16021MR3148512DOI10.1090/S0002-9939-2013-11823-X
- Dăscălescu, S., 10.1556/sscmath.2008.1067, Stud. Sci. Math. Hung. 45 (2008), 411-417. (2008) Zbl1188.16026MR2661993DOI10.1556/sscmath.2008.1067
- Dicks, W., Automorphisms of the polynomial ring in two variables, Publ., Secc. Mat., Univ. Autòn. Barc. 27 (1983), 155-162. (1983) Zbl0593.13005MR0763864
- Drensky, V., Yu, J.-T., 10.1007/s11464-007-0002-9, Front. Math. China 2 (2007), 13-46. (2007) Zbl1206.16015MR2289907DOI10.1007/s11464-007-0002-9
- Green, J. A., 10.1215/ijm/1255632708, Ill. J. Math. 6 (1962), 607-619. (1962) Zbl0131.26401MR0141709DOI10.1215/ijm/1255632708
- Jia, T., Zhao, R., Li, L., 10.1007/s11464-016-0565-4, Front. Math. China 11 (2016), 921-932. (2016) Zbl1372.16038MR3531037DOI10.1007/s11464-016-0565-4
- Li, F., 10.1006/jabr.1998.7491, J. Algebra 208 (1998), 72-100. (1998) Zbl0916.16020MR1643979DOI10.1006/jabr.1998.7491
- Li, L., Zhang, Y., 10.1090/conm/585, Hopf Algebras and Tensor Categories Contemporary Mathematics 585. AMS, Providence (2013), 275-288. (2013) Zbl1309.19001MR3077243DOI10.1090/conm/585
- McKay, J. H., Wang, S. S.-S., 10.1016/0022-4049(88)90137-5, J. Pure Appl. Algebra 52 (1988), 91-102. (1988) Zbl0656.13002MR0949340DOI10.1016/0022-4049(88)90137-5
- Perepechko, A., 10.1016/j.jalgebra.2014.01.018, J. Algebra 403 (2014), 455-458. (2014) Zbl1301.13024MR3166084DOI10.1016/j.jalgebra.2014.01.018
- Shestakov, I. P., Umirbaev, U. U., 10.1090/S0894-0347-03-00440-5, J. Am. Math. Soc. 17 (2004), 197-227. (2004) Zbl1056.14085MR2015334DOI10.1090/S0894-0347-03-00440-5
- Su, D., Yang, S., 10.21136/CMJ.2018.0131-17, Czech. Math. J. 68 (2018), 1131-1148. (2018) Zbl07031704MR3881903DOI10.21136/CMJ.2018.0131-17
- Su, D., Yang, S., 10.1007/s10998-017-0221-0, Period. Math. Hung. 76 (2018), 229-242. (2018) Zbl1399.16085MR3805598DOI10.1007/s10998-017-0221-0
- Taft, E. J., 10.1073/pnas.68.11.2631, Proc. Natl. Acad. Sci. USA 68 (1971), 2631-2633. (1971) Zbl0222.16012MR0286868DOI10.1073/pnas.68.11.2631
- Zhao, R., Yuan, C., Li, L., 10.1142/S1005386720000656, Algebra Colloq. 27 (2020), 767-798. (2020) Zbl1465.16043MR4170888DOI10.1142/S1005386720000656
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.