Automorphism group of green algebra of weak Hopf algebra corresponding to Sweedler Hopf algebra

Liufeng Cao; Dong Su; Hua Yao

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 1, page 101-115
  • ISSN: 0011-4642

Abstract

top
Let r ( 𝔴 2 0 ) be the Green ring of the weak Hopf algebra 𝔴 2 0 corresponding to Sweedler’s 4-dimensional Hopf algebra H 2 , and let Aut ( R ( 𝔴 2 0 ) ) be the automorphism group of the Green algebra R ( 𝔴 2 0 ) = r ( 𝔴 2 0 ) . We show that the quotient group Aut ( R ( 𝔴 2 0 ) ) / C 2 S 3 , where C 2 contains the identity map and is isomorphic to the infinite group ( * , × ) and S 3 is the symmetric group of order 6.

How to cite

top

Cao, Liufeng, Su, Dong, and Yao, Hua. "Automorphism group of green algebra of weak Hopf algebra corresponding to Sweedler Hopf algebra." Czechoslovak Mathematical Journal 73.1 (2023): 101-115. <http://eudml.org/doc/299535>.

@article{Cao2023,
abstract = {Let $r(\mathfrak \{w\}^0_2)$ be the Green ring of the weak Hopf algebra $\mathfrak \{w\}^0_2$ corresponding to Sweedler’s 4-dimensional Hopf algebra $H_2$, and let $\{\rm Aut\}(R(\mathfrak \{w\}^0_2))$ be the automorphism group of the Green algebra $R(\mathfrak \{w\}^0_2)=r(\mathfrak \{w\}^0_2)\otimes _\mathbb \{Z\}\mathbb \{C\}$. We show that the quotient group $\{\rm Aut\}(R(\mathfrak \{w\}^0_2))/C_2\cong S_3$, where $C_2$ contains the identity map and is isomorphic to the infinite group $(\mathbb \{C\}^*,\times )$ and $S_3$ is the symmetric group of order 6.},
author = {Cao, Liufeng, Su, Dong, Yao, Hua},
journal = {Czechoslovak Mathematical Journal},
keywords = {Green algebra; automorphism group; weak Hopf algebra},
language = {eng},
number = {1},
pages = {101-115},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Automorphism group of green algebra of weak Hopf algebra corresponding to Sweedler Hopf algebra},
url = {http://eudml.org/doc/299535},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Cao, Liufeng
AU - Su, Dong
AU - Yao, Hua
TI - Automorphism group of green algebra of weak Hopf algebra corresponding to Sweedler Hopf algebra
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 1
SP - 101
EP - 115
AB - Let $r(\mathfrak {w}^0_2)$ be the Green ring of the weak Hopf algebra $\mathfrak {w}^0_2$ corresponding to Sweedler’s 4-dimensional Hopf algebra $H_2$, and let ${\rm Aut}(R(\mathfrak {w}^0_2))$ be the automorphism group of the Green algebra $R(\mathfrak {w}^0_2)=r(\mathfrak {w}^0_2)\otimes _\mathbb {Z}\mathbb {C}$. We show that the quotient group ${\rm Aut}(R(\mathfrak {w}^0_2))/C_2\cong S_3$, where $C_2$ contains the identity map and is isomorphic to the infinite group $(\mathbb {C}^*,\times )$ and $S_3$ is the symmetric group of order 6.
LA - eng
KW - Green algebra; automorphism group; weak Hopf algebra
UR - http://eudml.org/doc/299535
ER -

References

top
  1. Aizawa, N., Isaac, P. S., 10.1063/1.1616999, J. Math. Phys. 44 (2003), 5250-5267. (2003) Zbl1063.16041MR2014859DOI10.1063/1.1616999
  2. Bardakov, V. G., Neshchadim, M. V., Sosnovsky, Y. V., 10.1016/j.jalgebra.2011.03.038, J. Algebra 362 (2012), 201-220. (2012) Zbl1269.16033MR2921639DOI10.1016/j.jalgebra.2011.03.038
  3. Beattie, M., Dăscălescu, S., Grünenfelder, L., 10.1006/jabr.1999.8148, J. Algebra 225 (2000), 743-770. (2000) Zbl0948.16026MR1741560DOI10.1006/jabr.1999.8148
  4. Chen, H., Oystaeyen, F. Van, Zhang, Y., 10.1090/S0002-9939-2013-11823-X, Proc. Am. Math. Soc. 142 (2014), 765-775. (2014) Zbl1309.16021MR3148512DOI10.1090/S0002-9939-2013-11823-X
  5. Dăscălescu, S., 10.1556/sscmath.2008.1067, Stud. Sci. Math. Hung. 45 (2008), 411-417. (2008) Zbl1188.16026MR2661993DOI10.1556/sscmath.2008.1067
  6. Dicks, W., Automorphisms of the polynomial ring in two variables, Publ., Secc. Mat., Univ. Autòn. Barc. 27 (1983), 155-162. (1983) Zbl0593.13005MR0763864
  7. Drensky, V., Yu, J.-T., 10.1007/s11464-007-0002-9, Front. Math. China 2 (2007), 13-46. (2007) Zbl1206.16015MR2289907DOI10.1007/s11464-007-0002-9
  8. Green, J. A., 10.1215/ijm/1255632708, Ill. J. Math. 6 (1962), 607-619. (1962) Zbl0131.26401MR0141709DOI10.1215/ijm/1255632708
  9. Jia, T., Zhao, R., Li, L., 10.1007/s11464-016-0565-4, Front. Math. China 11 (2016), 921-932. (2016) Zbl1372.16038MR3531037DOI10.1007/s11464-016-0565-4
  10. Li, F., 10.1006/jabr.1998.7491, J. Algebra 208 (1998), 72-100. (1998) Zbl0916.16020MR1643979DOI10.1006/jabr.1998.7491
  11. Li, L., Zhang, Y., 10.1090/conm/585, Hopf Algebras and Tensor Categories Contemporary Mathematics 585. AMS, Providence (2013), 275-288. (2013) Zbl1309.19001MR3077243DOI10.1090/conm/585
  12. McKay, J. H., Wang, S. S.-S., 10.1016/0022-4049(88)90137-5, J. Pure Appl. Algebra 52 (1988), 91-102. (1988) Zbl0656.13002MR0949340DOI10.1016/0022-4049(88)90137-5
  13. Perepechko, A., 10.1016/j.jalgebra.2014.01.018, J. Algebra 403 (2014), 455-458. (2014) Zbl1301.13024MR3166084DOI10.1016/j.jalgebra.2014.01.018
  14. Shestakov, I. P., Umirbaev, U. U., 10.1090/S0894-0347-03-00440-5, J. Am. Math. Soc. 17 (2004), 197-227. (2004) Zbl1056.14085MR2015334DOI10.1090/S0894-0347-03-00440-5
  15. Su, D., Yang, S., 10.21136/CMJ.2018.0131-17, Czech. Math. J. 68 (2018), 1131-1148. (2018) Zbl07031704MR3881903DOI10.21136/CMJ.2018.0131-17
  16. Su, D., Yang, S., 10.1007/s10998-017-0221-0, Period. Math. Hung. 76 (2018), 229-242. (2018) Zbl1399.16085MR3805598DOI10.1007/s10998-017-0221-0
  17. Taft, E. J., 10.1073/pnas.68.11.2631, Proc. Natl. Acad. Sci. USA 68 (1971), 2631-2633. (1971) Zbl0222.16012MR0286868DOI10.1073/pnas.68.11.2631
  18. Zhao, R., Yuan, C., Li, L., 10.1142/S1005386720000656, Algebra Colloq. 27 (2020), 767-798. (2020) Zbl1465.16043MR4170888DOI10.1142/S1005386720000656

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.