Passivity analysis of uncertain stochastic neural network with leakage and distributed delays under impulsive perturbations

Senthil Raj; Raja Ramachandran; Samidurai Rajendiran; Jinde Cao; Xiaodi Li

Kybernetika (2018)

  • Volume: 54, Issue: 1, page 3-29
  • ISSN: 0023-5954

Abstract

top
In this paper, the problem of passivity analysis for a class of uncertain stochastic neural networks with mixed delays and impulsive control is investigated. The mixed delays include constant delay in the leakage term, discrete and distributed delays. The discrete delays are assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. By using Lyapunov stability theory, stochastic analysis, linear matrix inequality techniques and introducing some free-weighting matrices, several novel sufficient conditions are derived to guarantee the passivity of the suggested system in the sense of mean square under two cases: with known or unknown parameters. It is believed that these results are significant and useful for the design and applications of impulsive stochastic neural networks. Finally, two numerical examples are provided to show the effectiveness of the theoretical results.

How to cite

top

Raj, Senthil, et al. "Passivity analysis of uncertain stochastic neural network with leakage and distributed delays under impulsive perturbations." Kybernetika 54.1 (2018): 3-29. <http://eudml.org/doc/294305>.

@article{Raj2018,
abstract = {In this paper, the problem of passivity analysis for a class of uncertain stochastic neural networks with mixed delays and impulsive control is investigated. The mixed delays include constant delay in the leakage term, discrete and distributed delays. The discrete delays are assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. By using Lyapunov stability theory, stochastic analysis, linear matrix inequality techniques and introducing some free-weighting matrices, several novel sufficient conditions are derived to guarantee the passivity of the suggested system in the sense of mean square under two cases: with known or unknown parameters. It is believed that these results are significant and useful for the design and applications of impulsive stochastic neural networks. Finally, two numerical examples are provided to show the effectiveness of the theoretical results.},
author = {Raj, Senthil, Ramachandran, Raja, Rajendiran, Samidurai, Cao, Jinde, Li, Xiaodi},
journal = {Kybernetika},
keywords = {distributed delays; leakage delay; passivity impulses; stochastic disturbances},
language = {eng},
number = {1},
pages = {3-29},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Passivity analysis of uncertain stochastic neural network with leakage and distributed delays under impulsive perturbations},
url = {http://eudml.org/doc/294305},
volume = {54},
year = {2018},
}

TY - JOUR
AU - Raj, Senthil
AU - Ramachandran, Raja
AU - Rajendiran, Samidurai
AU - Cao, Jinde
AU - Li, Xiaodi
TI - Passivity analysis of uncertain stochastic neural network with leakage and distributed delays under impulsive perturbations
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 1
SP - 3
EP - 29
AB - In this paper, the problem of passivity analysis for a class of uncertain stochastic neural networks with mixed delays and impulsive control is investigated. The mixed delays include constant delay in the leakage term, discrete and distributed delays. The discrete delays are assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. By using Lyapunov stability theory, stochastic analysis, linear matrix inequality techniques and introducing some free-weighting matrices, several novel sufficient conditions are derived to guarantee the passivity of the suggested system in the sense of mean square under two cases: with known or unknown parameters. It is believed that these results are significant and useful for the design and applications of impulsive stochastic neural networks. Finally, two numerical examples are provided to show the effectiveness of the theoretical results.
LA - eng
KW - distributed delays; leakage delay; passivity impulses; stochastic disturbances
UR - http://eudml.org/doc/294305
ER -

References

top
  1. Balasubramaniam, P., Nagamani, G., Rakkiyappan, R., 10.1016/j.cnsns.2011.03.028, Comm. Nonlinear Sci. Numerical Simul. 16 (2011), 4422-4437. MR2806757DOI10.1016/j.cnsns.2011.03.028
  2. Boyd, S., Ghaoui, L., Feron, E., Balakrishnan, V., 10.1137/1.9781611970777, SIAM, Philadelphia 1994. Zbl0816.93004DOI10.1137/1.9781611970777
  3. Cao, J., Li, R., 10.1007/s11432-016-0555-2, Science China Inform. Sci. 60 (2017), 032201. DOI10.1007/s11432-016-0555-2
  4. Cao, J., Rakkiyappan, R., Maheswari, K., Chandrasekar, A., 10.1007/s11431-016-6006-5, Science China Inform. Sci. 59(2016), 3, 387-402. DOI10.1007/s11431-016-6006-5
  5. Chen, Y., Wang, H., Xue, A., Lu, R., 10.1007/s11071-009-9632-7, Nonlinear Dynamics 61 (2010), 71-82. MR2661785DOI10.1007/s11071-009-9632-7
  6. Gopalsamy, K., 10.1007/978-94-015-7920-9, Kluwer Academic Publishers, Dordrecht 1992. MR1163190DOI10.1007/978-94-015-7920-9
  7. Haykin, S., Neural Networks: a Comprehensive Foundation (revised ed.), Upper Saddle River, Prentice-Hall, NJ 1998. 
  8. Hu, M., Cao, J., Hu, A., 10.1093/imamci/dnt014, IMA J. Math. Control Inform. 31 (2014), 345-362. MR3264991DOI10.1093/imamci/dnt014
  9. Gu, K., 10.1109/cdc.2000.914233, In: Proc. 39th IEEE Conference on Decision Control 2000, pp. 2805-2810. DOI10.1109/cdc.2000.914233
  10. He, Y., Wang, Q., Lin, C., Wu, M., 10.1016/j.automatica.2006.08.015, Automatica 43 (2007), 371-376. MR2281843DOI10.1016/j.automatica.2006.08.015
  11. Kwon, O., Lee, S., Park, Ju H., 10.1016/j.physleta.2010.01.007, Physics Lett. A 374 (2010), 1232-1241. DOI10.1016/j.physleta.2010.01.007
  12. Kwon, O., Park, M., Park, Ju.H., Lee, S., Cha, E., 10.1016/j.jfranklin.2013.06.014, J. Franklin Inst. 350 (2013), 2710-2735. MR3146943DOI10.1016/j.jfranklin.2013.06.014
  13. Li, X., Cao, J., 10.1088/0951-7715/23/7/010, Nonlinearity 23 (2010), 1709-1726. MR2652478DOI10.1088/0951-7715/23/7/010
  14. Li, R., Cao, J., 10.1002/mma.3738, Math. Methods Appl. Sci. 39 (2016), 11, 2896-2915. MR3512738DOI10.1002/mma.3738
  15. Li, R., Cao, J., 10.1016/j.amc.2016.01.016, Appl. Math. Comput. 278 (2016), 54-69. MR3457642DOI10.1016/j.amc.2016.01.016
  16. Li, X., Fu, X., 10.1016/j.jfranklin.2012.04.007, J. Franklin Inst. 350 (2013), 1335-1344. MR3067559DOI10.1016/j.jfranklin.2012.04.007
  17. Li, X., Rakkiyappan, R., 10.1007/s00521-012-0839-z, Neural Computing Appl. 22 (2013), S203-S219. DOI10.1007/s00521-012-0839-z
  18. Li, X., Song, S., 10.1109/tnnls.2012.2236352, IEEE Trans. Neural Networks Learning Systems 24 (2013), 868-877. DOI10.1109/tnnls.2012.2236352
  19. Li, X., Song, S., 10.1109/tac.2016.2530041, IEEE Trans. Automat. Control 62 (2017), 406-411. DOI10.1109/tac.2016.2530041
  20. Li, H., Wang, C., Shi, P., Gao, H., 10.1016/j.neucom.2010.04.019, Neurocomputing 73 (2010), 3291-3299. DOI10.1016/j.neucom.2010.04.019
  21. Li, X., Wu, J., 10.1016/j.automatica.2015.10.002, Automatica 64 (2016), 63-69. DOI10.1016/j.automatica.2015.10.002
  22. Li, Y., Yang, L., Sun, L., 10.1186/1687-1847-2013-218, Advances Diff. Equations 2013 (2013), 218. DOI10.1186/1687-1847-2013-218
  23. Liu, Y., D.Wang, Z., Liu, X. H., 10.1016/j.neunet.2005.03.015, Neural Networks 19 (2006), 5, 667-675. DOI10.1016/j.neunet.2005.03.015
  24. Mao, X., Stochastic Differential Equations with their Applications., Horwood, Chichester 1997. 
  25. Michel, A., Liu, D., Qualitative Analysis and Synthesis of Recurrent Neural Networks., Marcel Dekker, New York 2002. 
  26. Pan, L., Cao, J., 10.1016/j.neucom.2012.04.013, Neurocomputing 94 (2012), 102-110. DOI10.1016/j.neucom.2012.04.013
  27. Raja, R., Raja, U. Karthik, Samidurai, R., Leelamani, A., 10.1016/j.jfranklin.2013.08.003, J. Franklin Inst. 350 (2013), 3217-3247. MR3123415DOI10.1016/j.jfranklin.2013.08.003
  28. Raja, R., Raja, U. Karthik, Samidurai, R., Leelamani, A., 10.1007/s00521-014-1545-9, Neural Computing Appl. 25 (2014), 751-766. DOI10.1007/s00521-014-1545-9
  29. Raja, R., Samidurai, R., 10.1016/j.jfranklin.2012.03.007, J. Franklin Inst. 349 (2012), 2108-2123. MR2935279DOI10.1016/j.jfranklin.2012.03.007
  30. Rubio, J., 10.1007/s00521-015-2169-4, Neural Computing Appl. 28 (2017), 2017-2028. DOI10.1007/s00521-015-2169-4
  31. Song, Q., Cao, J., 10.1007/s11071-011-0097-0, Nonlinear Dynamics 67 (2012), 1695-1707. MR2870615DOI10.1007/s11071-011-0097-0
  32. Song, Q., Cao, J., 10.1007/s11071-011-0097-0, Nonlinear Dynamics 67 (2012), 1695-1707. MR2870615DOI10.1007/s11071-011-0097-0
  33. Tu, Z., Cao, J., Alsaedi, A., Hayat, T, 10.1016/j.neunet.2017.01.006, Neural Networks 89 (2017), 97-104. DOI10.1016/j.neunet.2017.01.006
  34. Wu, Z., Park, Ju H., Su, H., Chu, J., 10.1016/j.nonrwa.2011.11.017, Nonlinear Analysis: Real World Appl. 13 (2012), 1593-1599. MR2890995DOI10.1016/j.nonrwa.2011.11.017
  35. Yang, C., Huang, T., 10.1016/j.amc.2014.06.045, Appl. Math. Comput. 243 (2014), 923-935. DOI10.1016/j.amc.2014.06.045
  36. Zhao, Z., Song, Q., He, S., 10.1016/j.neucom.2012.08.049, Neurocomputing 47 (2015), 1-10. DOI10.1016/j.neucom.2012.08.049
  37. Zheng, C., Gong, C., Wang, Z., 10.1016/j.neucom.2013.02.032, Neurocomputing 118 (2013), 237-244. DOI10.1016/j.neucom.2013.02.032

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.