Mean almost periodicity and moment exponential stability of discrete-time stochastic shunting inhibitory cellular neural networks with time delays
Kybernetika (2019)
- Volume: 55, Issue: 4, page 690-713
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topZhang, Tianwei, and Xu, Lijun. "Mean almost periodicity and moment exponential stability of discrete-time stochastic shunting inhibitory cellular neural networks with time delays." Kybernetika 55.4 (2019): 690-713. <http://eudml.org/doc/295071>.
@article{Zhang2019,
abstract = {By using the semi-discrete method of differential equations, a new version of discrete analogue of stochastic shunting inhibitory cellular neural networks (SICNNs) is formulated, which gives a more accurate characterization for continuous-time stochastic SICNNs than that by Euler scheme. Firstly, the existence of the 2th mean almost periodic sequence solution of the discrete-time stochastic SICNNs is investigated with the help of Minkowski inequality, Hölder inequality and Krasnoselskii's fixed point theorem. Secondly, the moment global exponential stability of the discrete-time stochastic SICNNs is also studied by using some analytical skills and the proof of contradiction. Finally, two examples are given to demonstrate that our results are feasible. By numerical simulations, we discuss the effect of stochastic perturbation on the almost periodicity and global exponential stability of the discrete-time stochastic SICNNs.},
author = {Zhang, Tianwei, Xu, Lijun},
journal = {Kybernetika},
keywords = {semi-discrete method; stochastic; Krasnoselskii's fixed point theorem; almost periodicity; global exponential stability},
language = {eng},
number = {4},
pages = {690-713},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Mean almost periodicity and moment exponential stability of discrete-time stochastic shunting inhibitory cellular neural networks with time delays},
url = {http://eudml.org/doc/295071},
volume = {55},
year = {2019},
}
TY - JOUR
AU - Zhang, Tianwei
AU - Xu, Lijun
TI - Mean almost periodicity and moment exponential stability of discrete-time stochastic shunting inhibitory cellular neural networks with time delays
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 4
SP - 690
EP - 713
AB - By using the semi-discrete method of differential equations, a new version of discrete analogue of stochastic shunting inhibitory cellular neural networks (SICNNs) is formulated, which gives a more accurate characterization for continuous-time stochastic SICNNs than that by Euler scheme. Firstly, the existence of the 2th mean almost periodic sequence solution of the discrete-time stochastic SICNNs is investigated with the help of Minkowski inequality, Hölder inequality and Krasnoselskii's fixed point theorem. Secondly, the moment global exponential stability of the discrete-time stochastic SICNNs is also studied by using some analytical skills and the proof of contradiction. Finally, two examples are given to demonstrate that our results are feasible. By numerical simulations, we discuss the effect of stochastic perturbation on the almost periodicity and global exponential stability of the discrete-time stochastic SICNNs.
LA - eng
KW - semi-discrete method; stochastic; Krasnoselskii's fixed point theorem; almost periodicity; global exponential stability
UR - http://eudml.org/doc/295071
ER -
References
top- Arnold, L., Tudor, C., 10.1080/17442509808834163, Stochastics and Stochast. Reports 64 (1998), 177-193. MR1709282DOI10.1080/17442509808834163
- Arunkumar, A., Sakthivel, R., Mathiyalagan, K., Park, J. H., 10.1016/j.isatra.2014.05.002, ISA Transactions 53 (2014), 1006-1014. DOI10.1016/j.isatra.2014.05.002
- Bashkirtseva, I., 10.14736/kyb-2018-1-0096, Kybernetika 54 (2018), 96-109. MR3780958DOI10.14736/kyb-2018-1-0096
- Bezandry, P. H., Diagana, T., 10.1007/978-1-4419-9476-9, Springer, New York 2011. MR2761071DOI10.1007/978-1-4419-9476-9
- Bouzerdoum, A., Pinter, R. B., 10.1109/81.222804, IEEE Trans. Circuits Systems 1 - Fundament. Theory Appl. 40 (1993), 215-221. MR1232563DOI10.1109/81.222804
- Chen, A., Cao, J., Huang, L., 10.1016/s0375-9601(02)00469-3, Phys. Lett. A 298 (2002), 161-170. MR1917000DOI10.1016/s0375-9601(02)00469-3
- Dorogovtsev, A. Y., Ortega, O. A., On the existence of periodic solutions of a stochastic equation in a Hilbert space., Visnik Kiiv. Univ. Ser. Mat. Mekh. 30 (1988), 21-30. MR1004452
- Du, Bo, Liu, Y. R., Abbas, I. A., 10.1016/j.jfranklin.2015.11.013, J. Frank. Inst. 353 (2016), 448-461. MR3448152DOI10.1016/j.jfranklin.2015.11.013
- Fan, Q. Y., Shao, J. Y., 10.1016/j.cnsns.2009.06.026, Commun. Nonlinear Sci. Numer. Simulat. 15 (2010), 1655-1663. MR2576792DOI10.1016/j.cnsns.2009.06.026
- Hu, M. F., Cao, J. D., Hua, A. H., 10.1016/j.neucom.2013.09.011, Neurocomputing 129 (2014), 476-481. MR3077664DOI10.1016/j.neucom.2013.09.011
- Hu, S. G., Huang, C. M., Wu, F. K., 10.1142/9789812774798_0002, Science Press, Beijing 2008. MR0701398DOI10.1142/9789812774798_0002
- Hu, S., Wang, J., 10.1109/tcsi.2005.854288, IEEE Trans. Circuits Syst. I Regul. Pap. 53 (2006), 129-138. MR2212239DOI10.1109/tcsi.2005.854288
- Huang, Z. K., Mohamad, S., Gao, F., 10.1016/j.matcom.2013.05.017, Math. Computers Simul. 101 (2014), 43-60. MR3199946DOI10.1016/j.matcom.2013.05.017
- Huang, Z. K., Wang, X. H., Gao, F., 10.1016/j.physleta.2005.10.022, Physics Lett. A 350 (2006), 182-191. MR2344928DOI10.1016/j.physleta.2005.10.022
- Huang, Z. K., Wang, X. H., Xia, Y. H., 10.1016/j.simpat.2009.11.007, Simul. Modell. Practice Theory 18 (2010), 317-337. DOI10.1016/j.simpat.2009.11.007
- Kawata, T., Almost Periodic Weakly Stationary Processes, Statistics and Probability: Essays in Honor of C. R. Rao., North-Holland, Amsterdam 1982, pp. 383-396. MR0659491
- Kuang, J. C., Applied Inequalities., Shandong Science and Technology Press, Shandong 2012.
- Lan, Q. X., Niu, H. W., Liu, Y. M., Xu, H. F., 10.14736/kyb-2017-5-0780, Kybernetika 53 (2017), 780-802. MR3750103DOI10.14736/kyb-2017-5-0780
- Liu, B., Huang, L., 10.1016/j.physleta.2005.09.023, Phys. Lett. A 349 (2006), 177-186. MR2343183DOI10.1016/j.physleta.2005.09.023
- Liu, D., Wang, L.J., Pan, Y. N., Ma, H. Y., 10.1016/j.neucom.2015.06.045, Neurocomputing 171 (2016), 1622-1628. DOI10.1016/j.neucom.2015.06.045
- Mohamad, S., 10.1016/s0167-2789(01)00344-x, Physica D 159 (2001), 233-251. MR1868528DOI10.1016/s0167-2789(01)00344-x
- Mohamad, S., Gopalsamy, K., 10.1016/s0378-4754(00)00168-3, Math. Computers Simul. 53 (2000), 1-39. MR1777734DOI10.1016/s0378-4754(00)00168-3
- Mohamad, S., Gopalsamy, K., 10.1016/s0096-3003(01)00299-5, Appl. Math. Comput. 135 (2003), 17-38. MR1934312DOI10.1016/s0096-3003(01)00299-5
- Mohamad, S., Naim, A. G., 10.1016/s0377-0427(01)00366-1, J. Comput. Appl. Math. 138 (2002), 1-20. MR1876679DOI10.1016/s0377-0427(01)00366-1
- Nagamani, G., Ramasamy, S., Balasubramaniam, P., 10.1002/cplx.21614, Complexity 21 (2014), 47-58. MR3457542DOI10.1002/cplx.21614
- Ou, Y., Liu, H., Si, Y., Feng, Z., 10.1016/j.neucom.2009.10.017, Neurocomputing 73 (2010), 740-748. DOI10.1016/j.neucom.2009.10.017
- Raj, S., Ramachandran, R., Rajendiran, S., Cao, J. D., 10.14736/kyb-2018-1-0003, Kybernetika 54 (2018), 3-29. MR3780953DOI10.14736/kyb-2018-1-0003
- Şaylı, M., Yılmaz, E., 10.1016/j.neunet.2015.04.004, Neural Networks 68 (2015), 1-11. DOI10.1016/j.neunet.2015.04.004
- Smart, D. R., Fixed Point Theorems., Cambridge University Press, Cambridge 1980. MR0467717
- Swift, R. J., 10.1007/bf02280009, Georgian Math. J. 3 (1996), 275-292. MR1388674DOI10.1007/bf02280009
- Tudor, C., 10.1080/17442509208833758, Stochastics and Stochast. Reports 38 (1992), 251-266. MR1274905DOI10.1080/17442509208833758
- Wang, P., Li, B., Li, Y. K., 10.1016/j.neucom.2015.04.089, Neurocomputing 167 (2015), 76-82. MR2343183DOI10.1016/j.neucom.2015.04.089
- Wang, J., Zhang, X. M., Han, Q. L., 10.1109/tnnls.2015.2411734, IEEE Trans. Neural Networks Learning Systems 27 (2016), 77-88. MR3465626DOI10.1109/tnnls.2015.2411734
- Xiong, W., Cao, J. D., 10.1016/j.neucom.2004.08.004, Neurocomputing 64 (2005), 433-446. DOI10.1016/j.neucom.2004.08.004
- Xiong, L. L., Cheng, J., Cao, J. D., Liu, Z. X., 10.1016/j.amc.2017.11.020, Applied Math. Comput. 321 (2018), 672-688. MR3732406DOI10.1016/j.amc.2017.11.020
- Xu, C. J., Li, P. L., 10.1016/j.neucom.2017.08.030, Neurocomputing 275 (2018), 377-382. DOI10.1016/j.neucom.2017.08.030
- Yang, L., Li, Y. K., 10.1186/1687-1847-2014-37, Advances Difference Equations 2014 (2014), 1-37. MR3213930DOI10.1186/1687-1847-2014-37
- Yao, L. G., 10.1007/s11063-016-9529-7, Neural Process. Lett. 45 (2017), 401-409. DOI10.1007/s11063-016-9529-7
- Zhang, T. W., 10.1002/mma.2826, Math. Meth. Appl. Sci. 37 (2014), 686-697. MR3180630DOI10.1002/mma.2826
- Zhang, T. W., 10.1002/mma.2826, Int. J. Biomath. 7 (2014), 1450029 (22 pages). MR3210478DOI10.1002/mma.2826
- Zhang, T. W., Gan, X. R., 10.1016/j.cnsns.2013.06.019, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 150-163. MR3142456DOI10.1016/j.cnsns.2013.06.019
- Zhang, X. M., Han, Q. L., 10.1109/tnn.2011.2147331, IEEE Trans. Neural Networks 22 (2011), 1180-1192. DOI10.1109/tnn.2011.2147331
- Zhang, X. M., Han, Q. L., 10.1016/j.neucom.2018.06.038, Neurocomputing 313 (2018), 392-401. DOI10.1016/j.neucom.2018.06.038
- Zhang, X. M., Han, Q. L., Zeng, Z. G., 10.1109/tcyb.2017.2776283, IEEE Trans. Cybernet. 48 (2018), 1660-1671. DOI10.1109/tcyb.2017.2776283
- Zhang, T. W., Liao, Y. Z., 10.14736/kyb-2017-4-0612, Kybernetika 53 (2017), 612-629. MR3730255DOI10.14736/kyb-2017-4-0612
- Zhang, H. Y., Qiu, Z. P., Xiong, L. L., 10.1016/j.neucom.2018.12.028, Neurocomputing 333 (2019), 395-406. DOI10.1016/j.neucom.2018.12.028
- Zhang, T. W., Xiong, L. L., 10.1016/j.aml.2019.106072, Applied Mathematics Letters 101 (2020), 106072. MR4018066DOI10.1016/j.aml.2019.106072
- Zhang, T. W., Yang, L., Xu, L. J., 10.1080/00207179.2018.1513165, International Journal of Control 2019 (2019), in print. DOI10.1080/00207179.2018.1513165
- Zhang, Z. Q., Zhou, D. M., 10.1016/j.jfranklin.2010.02.007, J. Frank. Inst. 347 (2010), 763-780. MR2645389DOI10.1016/j.jfranklin.2010.02.007
- Zhao, H., Sun, L., Wang, G., 10.1016/j.neucom.2006.11.010, Neurocomputing 70 (2007), 2924-2930. DOI10.1016/j.neucom.2006.11.010
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.