Mean almost periodicity and moment exponential stability of discrete-time stochastic shunting inhibitory cellular neural networks with time delays

Tianwei Zhang; Lijun Xu

Kybernetika (2019)

  • Volume: 55, Issue: 4, page 690-713
  • ISSN: 0023-5954

Abstract

top
By using the semi-discrete method of differential equations, a new version of discrete analogue of stochastic shunting inhibitory cellular neural networks (SICNNs) is formulated, which gives a more accurate characterization for continuous-time stochastic SICNNs than that by Euler scheme. Firstly, the existence of the 2th mean almost periodic sequence solution of the discrete-time stochastic SICNNs is investigated with the help of Minkowski inequality, Hölder inequality and Krasnoselskii's fixed point theorem. Secondly, the moment global exponential stability of the discrete-time stochastic SICNNs is also studied by using some analytical skills and the proof of contradiction. Finally, two examples are given to demonstrate that our results are feasible. By numerical simulations, we discuss the effect of stochastic perturbation on the almost periodicity and global exponential stability of the discrete-time stochastic SICNNs.

How to cite

top

Zhang, Tianwei, and Xu, Lijun. "Mean almost periodicity and moment exponential stability of discrete-time stochastic shunting inhibitory cellular neural networks with time delays." Kybernetika 55.4 (2019): 690-713. <http://eudml.org/doc/295071>.

@article{Zhang2019,
abstract = {By using the semi-discrete method of differential equations, a new version of discrete analogue of stochastic shunting inhibitory cellular neural networks (SICNNs) is formulated, which gives a more accurate characterization for continuous-time stochastic SICNNs than that by Euler scheme. Firstly, the existence of the 2th mean almost periodic sequence solution of the discrete-time stochastic SICNNs is investigated with the help of Minkowski inequality, Hölder inequality and Krasnoselskii's fixed point theorem. Secondly, the moment global exponential stability of the discrete-time stochastic SICNNs is also studied by using some analytical skills and the proof of contradiction. Finally, two examples are given to demonstrate that our results are feasible. By numerical simulations, we discuss the effect of stochastic perturbation on the almost periodicity and global exponential stability of the discrete-time stochastic SICNNs.},
author = {Zhang, Tianwei, Xu, Lijun},
journal = {Kybernetika},
keywords = {semi-discrete method; stochastic; Krasnoselskii's fixed point theorem; almost periodicity; global exponential stability},
language = {eng},
number = {4},
pages = {690-713},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Mean almost periodicity and moment exponential stability of discrete-time stochastic shunting inhibitory cellular neural networks with time delays},
url = {http://eudml.org/doc/295071},
volume = {55},
year = {2019},
}

TY - JOUR
AU - Zhang, Tianwei
AU - Xu, Lijun
TI - Mean almost periodicity and moment exponential stability of discrete-time stochastic shunting inhibitory cellular neural networks with time delays
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 4
SP - 690
EP - 713
AB - By using the semi-discrete method of differential equations, a new version of discrete analogue of stochastic shunting inhibitory cellular neural networks (SICNNs) is formulated, which gives a more accurate characterization for continuous-time stochastic SICNNs than that by Euler scheme. Firstly, the existence of the 2th mean almost periodic sequence solution of the discrete-time stochastic SICNNs is investigated with the help of Minkowski inequality, Hölder inequality and Krasnoselskii's fixed point theorem. Secondly, the moment global exponential stability of the discrete-time stochastic SICNNs is also studied by using some analytical skills and the proof of contradiction. Finally, two examples are given to demonstrate that our results are feasible. By numerical simulations, we discuss the effect of stochastic perturbation on the almost periodicity and global exponential stability of the discrete-time stochastic SICNNs.
LA - eng
KW - semi-discrete method; stochastic; Krasnoselskii's fixed point theorem; almost periodicity; global exponential stability
UR - http://eudml.org/doc/295071
ER -

References

top
  1. Arnold, L., Tudor, C., 10.1080/17442509808834163, Stochastics and Stochast. Reports 64 (1998), 177-193. MR1709282DOI10.1080/17442509808834163
  2. Arunkumar, A., Sakthivel, R., Mathiyalagan, K., Park, J. H., 10.1016/j.isatra.2014.05.002, ISA Transactions 53 (2014), 1006-1014. DOI10.1016/j.isatra.2014.05.002
  3. Bashkirtseva, I., 10.14736/kyb-2018-1-0096, Kybernetika 54 (2018), 96-109. MR3780958DOI10.14736/kyb-2018-1-0096
  4. Bezandry, P. H., Diagana, T., 10.1007/978-1-4419-9476-9, Springer, New York 2011. MR2761071DOI10.1007/978-1-4419-9476-9
  5. Bouzerdoum, A., Pinter, R. B., 10.1109/81.222804, IEEE Trans. Circuits Systems 1 - Fundament. Theory Appl. 40 (1993), 215-221. MR1232563DOI10.1109/81.222804
  6. Chen, A., Cao, J., Huang, L., 10.1016/s0375-9601(02)00469-3, Phys. Lett. A 298 (2002), 161-170. MR1917000DOI10.1016/s0375-9601(02)00469-3
  7. Dorogovtsev, A. Y., Ortega, O. A., On the existence of periodic solutions of a stochastic equation in a Hilbert space., Visnik Kiiv. Univ. Ser. Mat. Mekh. 30 (1988), 21-30. MR1004452
  8. Du, Bo, Liu, Y. R., Abbas, I. A., 10.1016/j.jfranklin.2015.11.013, J. Frank. Inst. 353 (2016), 448-461. MR3448152DOI10.1016/j.jfranklin.2015.11.013
  9. Fan, Q. Y., Shao, J. Y., 10.1016/j.cnsns.2009.06.026, Commun. Nonlinear Sci. Numer. Simulat. 15 (2010), 1655-1663. MR2576792DOI10.1016/j.cnsns.2009.06.026
  10. Hu, M. F., Cao, J. D., Hua, A. H., 10.1016/j.neucom.2013.09.011, Neurocomputing 129 (2014), 476-481. MR3077664DOI10.1016/j.neucom.2013.09.011
  11. Hu, S. G., Huang, C. M., Wu, F. K., 10.1142/9789812774798_0002, Science Press, Beijing 2008. MR0701398DOI10.1142/9789812774798_0002
  12. Hu, S., Wang, J., 10.1109/tcsi.2005.854288, IEEE Trans. Circuits Syst. I Regul. Pap. 53 (2006), 129-138. MR2212239DOI10.1109/tcsi.2005.854288
  13. Huang, Z. K., Mohamad, S., Gao, F., 10.1016/j.matcom.2013.05.017, Math. Computers Simul. 101 (2014), 43-60. MR3199946DOI10.1016/j.matcom.2013.05.017
  14. Huang, Z. K., Wang, X. H., Gao, F., 10.1016/j.physleta.2005.10.022, Physics Lett. A 350 (2006), 182-191. MR2344928DOI10.1016/j.physleta.2005.10.022
  15. Huang, Z. K., Wang, X. H., Xia, Y. H., 10.1016/j.simpat.2009.11.007, Simul. Modell. Practice Theory 18 (2010), 317-337. DOI10.1016/j.simpat.2009.11.007
  16. Kawata, T., Almost Periodic Weakly Stationary Processes, Statistics and Probability: Essays in Honor of C. R. Rao., North-Holland, Amsterdam 1982, pp. 383-396. MR0659491
  17. Kuang, J. C., Applied Inequalities., Shandong Science and Technology Press, Shandong 2012. 
  18. Lan, Q. X., Niu, H. W., Liu, Y. M., Xu, H. F., 10.14736/kyb-2017-5-0780, Kybernetika 53 (2017), 780-802. MR3750103DOI10.14736/kyb-2017-5-0780
  19. Liu, B., Huang, L., 10.1016/j.physleta.2005.09.023, Phys. Lett. A 349 (2006), 177-186. MR2343183DOI10.1016/j.physleta.2005.09.023
  20. Liu, D., Wang, L.J., Pan, Y. N., Ma, H. Y., 10.1016/j.neucom.2015.06.045, Neurocomputing 171 (2016), 1622-1628. DOI10.1016/j.neucom.2015.06.045
  21. Mohamad, S., 10.1016/s0167-2789(01)00344-x, Physica D 159 (2001), 233-251. MR1868528DOI10.1016/s0167-2789(01)00344-x
  22. Mohamad, S., Gopalsamy, K., 10.1016/s0378-4754(00)00168-3, Math. Computers Simul. 53 (2000), 1-39. MR1777734DOI10.1016/s0378-4754(00)00168-3
  23. Mohamad, S., Gopalsamy, K., 10.1016/s0096-3003(01)00299-5, Appl. Math. Comput. 135 (2003), 17-38. MR1934312DOI10.1016/s0096-3003(01)00299-5
  24. Mohamad, S., Naim, A. G., 10.1016/s0377-0427(01)00366-1, J. Comput. Appl. Math. 138 (2002), 1-20. MR1876679DOI10.1016/s0377-0427(01)00366-1
  25. Nagamani, G., Ramasamy, S., Balasubramaniam, P., 10.1002/cplx.21614, Complexity 21 (2014), 47-58. MR3457542DOI10.1002/cplx.21614
  26. Ou, Y., Liu, H., Si, Y., Feng, Z., 10.1016/j.neucom.2009.10.017, Neurocomputing 73 (2010), 740-748. DOI10.1016/j.neucom.2009.10.017
  27. Raj, S., Ramachandran, R., Rajendiran, S., Cao, J. D., 10.14736/kyb-2018-1-0003, Kybernetika 54 (2018), 3-29. MR3780953DOI10.14736/kyb-2018-1-0003
  28. Şaylı, M., Yılmaz, E., 10.1016/j.neunet.2015.04.004, Neural Networks 68 (2015), 1-11. DOI10.1016/j.neunet.2015.04.004
  29. Smart, D. R., Fixed Point Theorems., Cambridge University Press, Cambridge 1980. MR0467717
  30. Swift, R. J., 10.1007/bf02280009, Georgian Math. J. 3 (1996), 275-292. MR1388674DOI10.1007/bf02280009
  31. Tudor, C., 10.1080/17442509208833758, Stochastics and Stochast. Reports 38 (1992), 251-266. MR1274905DOI10.1080/17442509208833758
  32. Wang, P., Li, B., Li, Y. K., 10.1016/j.neucom.2015.04.089, Neurocomputing 167 (2015), 76-82. MR2343183DOI10.1016/j.neucom.2015.04.089
  33. Wang, J., Zhang, X. M., Han, Q. L., 10.1109/tnnls.2015.2411734, IEEE Trans. Neural Networks Learning Systems 27 (2016), 77-88. MR3465626DOI10.1109/tnnls.2015.2411734
  34. Xiong, W., Cao, J. D., 10.1016/j.neucom.2004.08.004, Neurocomputing 64 (2005), 433-446. DOI10.1016/j.neucom.2004.08.004
  35. Xiong, L. L., Cheng, J., Cao, J. D., Liu, Z. X., 10.1016/j.amc.2017.11.020, Applied Math. Comput. 321 (2018), 672-688. MR3732406DOI10.1016/j.amc.2017.11.020
  36. Xu, C. J., Li, P. L., 10.1016/j.neucom.2017.08.030, Neurocomputing 275 (2018), 377-382. DOI10.1016/j.neucom.2017.08.030
  37. Yang, L., Li, Y. K., 10.1186/1687-1847-2014-37, Advances Difference Equations 2014 (2014), 1-37. MR3213930DOI10.1186/1687-1847-2014-37
  38. Yao, L. G., 10.1007/s11063-016-9529-7, Neural Process. Lett. 45 (2017), 401-409. DOI10.1007/s11063-016-9529-7
  39. Zhang, T. W., 10.1002/mma.2826, Math. Meth. Appl. Sci. 37 (2014), 686-697. MR3180630DOI10.1002/mma.2826
  40. Zhang, T. W., 10.1002/mma.2826, Int. J. Biomath. 7 (2014), 1450029 (22 pages). MR3210478DOI10.1002/mma.2826
  41. Zhang, T. W., Gan, X. R., 10.1016/j.cnsns.2013.06.019, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 150-163. MR3142456DOI10.1016/j.cnsns.2013.06.019
  42. Zhang, X. M., Han, Q. L., 10.1109/tnn.2011.2147331, IEEE Trans. Neural Networks 22 (2011), 1180-1192. DOI10.1109/tnn.2011.2147331
  43. Zhang, X. M., Han, Q. L., 10.1016/j.neucom.2018.06.038, Neurocomputing 313 (2018), 392-401. DOI10.1016/j.neucom.2018.06.038
  44. Zhang, X. M., Han, Q. L., Zeng, Z. G., 10.1109/tcyb.2017.2776283, IEEE Trans. Cybernet. 48 (2018), 1660-1671. DOI10.1109/tcyb.2017.2776283
  45. Zhang, T. W., Liao, Y. Z., 10.14736/kyb-2017-4-0612, Kybernetika 53 (2017), 612-629. MR3730255DOI10.14736/kyb-2017-4-0612
  46. Zhang, H. Y., Qiu, Z. P., Xiong, L. L., 10.1016/j.neucom.2018.12.028, Neurocomputing 333 (2019), 395-406. DOI10.1016/j.neucom.2018.12.028
  47. Zhang, T. W., Xiong, L. L., 10.1016/j.aml.2019.106072, Applied Mathematics Letters 101 (2020), 106072. MR4018066DOI10.1016/j.aml.2019.106072
  48. Zhang, T. W., Yang, L., Xu, L. J., 10.1080/00207179.2018.1513165, International Journal of Control 2019 (2019), in print. DOI10.1080/00207179.2018.1513165
  49. Zhang, Z. Q., Zhou, D. M., 10.1016/j.jfranklin.2010.02.007, J. Frank. Inst. 347 (2010), 763-780. MR2645389DOI10.1016/j.jfranklin.2010.02.007
  50. Zhao, H., Sun, L., Wang, G., 10.1016/j.neucom.2006.11.010, Neurocomputing 70 (2007), 2924-2930. DOI10.1016/j.neucom.2006.11.010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.