Statistical convergence of sequences of functions with values in semi-uniform spaces

Dimitrios N. Georgiou; Athanasios C. Megaritis; Selma Özçağ

Commentationes Mathematicae Universitatis Carolinae (2018)

  • Volume: 59, Issue: 1, page 103-117
  • ISSN: 0010-2628

Abstract

top
We study several kinds of statistical convergence of sequences of functions with values in semi-uniform spaces. Particularly, we generalize to statistical convergence the classical results of C. Arzelà, Dini and P.S. Alexandroff, as well as their statistical versions studied in [Caserta A., Di Maio G., Kočinac L.D.R., {Statistical convergence in function spaces},. Abstr. Appl. Anal. 2011, Art. ID 420419, 11 pp.] and [Caserta A., Kočinac L.D.R., {On statistical exhaustiveness}, Appl. Math. Lett. 25 (2012), no. 10, 1447--1451].

How to cite

top

Georgiou, Dimitrios N., Megaritis, Athanasios C., and Özçağ, Selma. "Statistical convergence of sequences of functions with values in semi-uniform spaces." Commentationes Mathematicae Universitatis Carolinae 59.1 (2018): 103-117. <http://eudml.org/doc/294307>.

@article{Georgiou2018,
abstract = {We study several kinds of statistical convergence of sequences of functions with values in semi-uniform spaces. Particularly, we generalize to statistical convergence the classical results of C. Arzelà, Dini and P.S. Alexandroff, as well as their statistical versions studied in [Caserta A., Di Maio G., Kočinac L.D.R., \{Statistical convergence in function spaces\},. Abstr. Appl. Anal. 2011, Art. ID 420419, 11 pp.] and [Caserta A., Kočinac L.D.R., \{On statistical exhaustiveness\}, Appl. Math. Lett. 25 (2012), no. 10, 1447--1451].},
author = {Georgiou, Dimitrios N., Megaritis, Athanasios C., Özçağ, Selma},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {statistical convergence; semi-uniform space; sequence; function; continuity},
language = {eng},
number = {1},
pages = {103-117},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Statistical convergence of sequences of functions with values in semi-uniform spaces},
url = {http://eudml.org/doc/294307},
volume = {59},
year = {2018},
}

TY - JOUR
AU - Georgiou, Dimitrios N.
AU - Megaritis, Athanasios C.
AU - Özçağ, Selma
TI - Statistical convergence of sequences of functions with values in semi-uniform spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 1
SP - 103
EP - 117
AB - We study several kinds of statistical convergence of sequences of functions with values in semi-uniform spaces. Particularly, we generalize to statistical convergence the classical results of C. Arzelà, Dini and P.S. Alexandroff, as well as their statistical versions studied in [Caserta A., Di Maio G., Kočinac L.D.R., {Statistical convergence in function spaces},. Abstr. Appl. Anal. 2011, Art. ID 420419, 11 pp.] and [Caserta A., Kočinac L.D.R., {On statistical exhaustiveness}, Appl. Math. Lett. 25 (2012), no. 10, 1447--1451].
LA - eng
KW - statistical convergence; semi-uniform space; sequence; function; continuity
UR - http://eudml.org/doc/294307
ER -

References

top
  1. Alexandroff P. S., Einführung in die Mengenlehre und die Theorie der reellen Funktionen, Zweite Auflage. Übersetzung aus dem Russischen: Manfred Peschel und Wolfgang Richter. Hochschulbücher für Mathematik, Band 23 VEB Deutscher Verlag der Wissenschaften, Berlin, 1964 (German). 
  2. Arzelà C., Intorno alla continuità della somma d'infinità di funzioni continue, Rend. dell'Accad. di Bologna (1883–1884), 79–84 (Italian). 
  3. Balcerzak M., Dems K., Komisarski A., 10.1016/j.jmaa.2006.05.040, J. Math. Anal. Appl. 328 (2007), no. 1, 715–729. DOI10.1016/j.jmaa.2006.05.040
  4. Bînzar T., On some convergences for nets of functions with values in generalized uniform spaces, Novi Sad J. Math. 39 (2009), no. 1, 69–80. 
  5. Caserta A., Di Maio G., Convergences characterizing the continuity of the limits of functions: a survey from Arzelà's theorem (1883) to the present, Proceedings ICTA2011, Islamabad, Pakistan, July 4–10, 2011; Cambridge Scientific Publishers, 2012, pp. 75–103. 
  6. Caserta A., Di Maio G., Holá L'., 10.1016/j.jmaa.2010.05.042, J. Math. Anal. Appl. 371 (2010), no. 1, 384–392. DOI10.1016/j.jmaa.2010.05.042
  7. Caserta A., Di Maio G., Kočinac L. D. R., Statistical convergence in function spaces, . Abstr. Appl. Anal. 2011, Art. ID 420419, 11 pp. 
  8. Caserta A., Kočinac L. D. R., 10.1016/j.aml.2011.12.022, Appl. Math. Lett. 25 (2012), no. 10, 1447–1451. DOI10.1016/j.aml.2011.12.022
  9. Engelking R., General Topology, translated from the Polish by the author, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, 1989. Zbl0684.54001
  10. Ewert J., Generalized uniform spaces and almost uniform convergence, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 42(90) (1999), no. 4, 315–329. 
  11. Fast H., 10.4064/cm-2-3-4-241-244, Colloquium Math. 2 (1951), 241–244 (French). Zbl0044.33605DOI10.4064/cm-2-3-4-241-244
  12. Fridy J. A., 10.1524/anly.1985.5.4.301, Analysis 5 (1985), no. 4, 301–313. Zbl0588.40001DOI10.1524/anly.1985.5.4.301
  13. Kelley J. L., General Topology, reprint of the 1955 edition [Van Nostrand, Toronto, Ont.], Graduate Texts in Mathematics, 27, Springer, New York-Berlin, 1975. Zbl0518.54001
  14. Di Maio G., Kočinac L. D. R., 10.1016/j.topol.2008.01.015, Topology Appl. 156 (2008), no. 1, 28–45. Zbl1155.54004DOI10.1016/j.topol.2008.01.015
  15. Marjanović M., A note on uniform convergence, Publ. Inst. Math. (Beograd) (N.S.) 1(15) (1961), 109–110. 
  16. Megaritis A. C., 10.2298/FIL1720281M, Filomat 31 (2017), no. 20, 6281–6292. DOI10.2298/FIL1720281M
  17. Morita K., 10.3792/pja/1195571178, I.–IV., Proc. Japan Acad. 27 (1951), 65–72, 130–137, 166–171, 632–636. DOI10.3792/pja/1195571178
  18. Morita K., Nagata J. (eds.), Topics in General Topology, North-Holland Mathematical Library, 41, North-Holland Publishing Co., Amsterdam, 1989. 
  19. Šalát T., On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), no. 2, 139–150. Zbl0437.40003
  20. Schoenberg I. J., 10.1080/00029890.1959.11989303, Amer. Math. Monthly 66 (1959), 361–375. Zbl0089.04002DOI10.1080/00029890.1959.11989303
  21. Steinhaus H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73–74 (French). 
  22. Tukey J. W., Convergence and Uniformity in Topology, Annals of Mathematics Studies, 2, Princeton University Press, Princeton, N.J., 1940. 
  23. Zygmund A., Trigonometric Series, . Vol. I, II, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2002. Zbl1084.42003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.