Rings consisting entirely of certain elements

Huanyin Chen; Marjan Sheibani; Nahid Ashrafi

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 2, page 553-558
  • ISSN: 0011-4642

Abstract

top
We completely determine when a ring consists entirely of weak idempotents, units and nilpotents. We prove that such ring is exactly isomorphic to one of the following: a Boolean ring; 3 3 ; 3 B where B is a Boolean ring; local ring with nil Jacobson radical; M 2 ( 2 ) or M 2 ( 3 ) ; or the ring of a Morita context with zero pairings where the underlying rings are 2 or 3 .

How to cite

top

Chen, Huanyin, Sheibani, Marjan, and Ashrafi, Nahid. "Rings consisting entirely of certain elements." Czechoslovak Mathematical Journal 68.2 (2018): 553-558. <http://eudml.org/doc/294309>.

@article{Chen2018,
abstract = {We completely determine when a ring consists entirely of weak idempotents, units and nilpotents. We prove that such ring is exactly isomorphic to one of the following: a Boolean ring; $\mathbb \{Z\}_3\oplus \{\mathbb \{Z\}\}_3$; $\mathbb \{Z\}_3\oplus B$ where $B$ is a Boolean ring; local ring with nil Jacobson radical; $M_2(\mathbb \{Z\}_2)$ or $M_2(\mathbb \{Z\}_3)$; or the ring of a Morita context with zero pairings where the underlying rings are $\mathbb \{Z\}_2$ or $\mathbb \{Z\}_3$.},
author = {Chen, Huanyin, Sheibani, Marjan, Ashrafi, Nahid},
journal = {Czechoslovak Mathematical Journal},
keywords = {idempotent; nilpotent; Boolean ring; local ring; Morita context},
language = {eng},
number = {2},
pages = {553-558},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Rings consisting entirely of certain elements},
url = {http://eudml.org/doc/294309},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Chen, Huanyin
AU - Sheibani, Marjan
AU - Ashrafi, Nahid
TI - Rings consisting entirely of certain elements
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 2
SP - 553
EP - 558
AB - We completely determine when a ring consists entirely of weak idempotents, units and nilpotents. We prove that such ring is exactly isomorphic to one of the following: a Boolean ring; $\mathbb {Z}_3\oplus {\mathbb {Z}}_3$; $\mathbb {Z}_3\oplus B$ where $B$ is a Boolean ring; local ring with nil Jacobson radical; $M_2(\mathbb {Z}_2)$ or $M_2(\mathbb {Z}_3)$; or the ring of a Morita context with zero pairings where the underlying rings are $\mathbb {Z}_2$ or $\mathbb {Z}_3$.
LA - eng
KW - idempotent; nilpotent; Boolean ring; local ring; Morita context
UR - http://eudml.org/doc/294309
ER -

References

top
  1. Ahn, M. S., Anderson, D. D., 10.1216/rmjm/1181069429, Rocky Mountain J. Math. 36 (2006), 783-798. (2006) Zbl1131.13301MR2254362DOI10.1216/rmjm/1181069429
  2. Anderson, D. D., Camillo, V. P., 10.1081/agb-120004490, Comm. Algebra 30 (2002), 3327-3336. (2002) Zbl1083.13501MR1914999DOI10.1081/agb-120004490
  3. Breaz, S., Gălugăreanu, G., Danchev, P., Micu, T., 10.1016/j.laa.2013.08.027, Linear Algebra Appl. 439 (2013), 3115-3119. (2013) Zbl1355.16023MR3116417DOI10.1016/j.laa.2013.08.027
  4. Chen, H., Rings Related Stable Range Conditions, Series in Algebra 11. World Scientific, Hackensack (2011). (2011) Zbl1245.16002MR2752904
  5. Danchev, P. V., McGovern, W. W., 10.1016/j.jalgebra.2014.12.003, J. Algebra 425 (2015), 410-422. (2015) Zbl1316.16028MR3295991DOI10.1016/j.jalgebra.2014.12.003
  6. Diesl, A. J., 10.1016/j.jalgebra.2013.02.020, J. Algebra 383 (2013), 197-211. (2013) Zbl1296.16016MR3037975DOI10.1016/j.jalgebra.2013.02.020
  7. Du, X., 10.1081/AGB-120013336, Commun. Algebra 30 (2002), 4507-4525. (2002) Zbl1030.16012MR1936488DOI10.1081/AGB-120013336
  8. Immormino, N. A., Clean Rings & Clean Group Rings, Ph.D. Thesis, Bowling Green State University, Bowling Green (2013). (2013) MR3321928
  9. Kosan, M. T., Lee, T. K., Zhou, Y., 10.1016/j.laa.2014.02.047, Linear Algebra Appl. 450 (2014), 7-12. (2014) Zbl1303.15016MR3192466DOI10.1016/j.laa.2014.02.047
  10. McGovern, W., Raja, S., Sharp, A., 10.1142/S0219498815500942, J. Algebra Appl. 14 (2015). (2015) Zbl1325.16024MR3338090DOI10.1142/S0219498815500942
  11. Nicholson, W. K., 10.1007/BF01838190, Aequations Math. 9 (1973), 64-70. (1973) Zbl0255.16006MR0316497DOI10.1007/BF01838190

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.