Existence of solutions for some quasilinear -elliptic problem with Hardy potential
Elhoussine Azroul; Mohammed Bouziani; Hassane Hjiaj; Ahmed Youssfi
Mathematica Bohemica (2019)
- Volume: 144, Issue: 3, page 299-324
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topAzroul, Elhoussine, et al. "Existence of solutions for some quasilinear $\vec{p}(x)$-elliptic problem with Hardy potential." Mathematica Bohemica 144.3 (2019): 299-324. <http://eudml.org/doc/294314>.
@article{Azroul2019,
abstract = {We consider the anisotropic quasilinear elliptic Dirichlet problem \[ \{\left\lbrace \begin\{array\}\{ll\} \displaystyle -\sum \_\{i=1\}^\{N\} D^\{i\} a\_\{i\}(x,u,\nabla u) + |u|^\{s(x)-1\}u= f +\lambda \frac\{|u|^\{p\_\{0\}(x)-2\}u\}\{|x|^\{p\_\{0\}(x)\}\}&\text\{in\}\ \Omega ,\\ u = 0 & \text\{on\}\ \partial \Omega , \end\{array\}\right.\} \]
where $\Omega $ is an open bounded subset of $\mathbb \{R\}^N$ containing the origin. We show the existence of entropy solution for this equation where the data $f$ is assumed to be in $L^\{1\}(\Omega )$ and $\lambda $ is a positive constant.},
author = {Azroul, Elhoussine, Bouziani, Mohammed, Hjiaj, Hassane, Youssfi, Ahmed},
journal = {Mathematica Bohemica},
keywords = {anisotropic variable exponent Sobolev space; quasilinear elliptic equation; Hardy potential; entropy solution; $L^\{1\}$-data},
language = {eng},
number = {3},
pages = {299-324},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of solutions for some quasilinear $\vec\{p\}(x)$-elliptic problem with Hardy potential},
url = {http://eudml.org/doc/294314},
volume = {144},
year = {2019},
}
TY - JOUR
AU - Azroul, Elhoussine
AU - Bouziani, Mohammed
AU - Hjiaj, Hassane
AU - Youssfi, Ahmed
TI - Existence of solutions for some quasilinear $\vec{p}(x)$-elliptic problem with Hardy potential
JO - Mathematica Bohemica
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 144
IS - 3
SP - 299
EP - 324
AB - We consider the anisotropic quasilinear elliptic Dirichlet problem \[ {\left\lbrace \begin{array}{ll} \displaystyle -\sum _{i=1}^{N} D^{i} a_{i}(x,u,\nabla u) + |u|^{s(x)-1}u= f +\lambda \frac{|u|^{p_{0}(x)-2}u}{|x|^{p_{0}(x)}}&\text{in}\ \Omega ,\\ u = 0 & \text{on}\ \partial \Omega , \end{array}\right.} \]
where $\Omega $ is an open bounded subset of $\mathbb {R}^N$ containing the origin. We show the existence of entropy solution for this equation where the data $f$ is assumed to be in $L^{1}(\Omega )$ and $\lambda $ is a positive constant.
LA - eng
KW - anisotropic variable exponent Sobolev space; quasilinear elliptic equation; Hardy potential; entropy solution; $L^{1}$-data
UR - http://eudml.org/doc/294314
ER -
References
top- Abdellaoui, B., Peral, I., Primo, A., 10.1016/j.jde.2007.05.010, J. Differ. Equations 239 (2007), 386-416. (2007) Zbl1331.35128MR2344278DOI10.1016/j.jde.2007.05.010
- Alberico, A., Blasio, G. Di, Feo, F., 10.1002/mana.201500282, Math. Nachr. 290 (2017), 986-1003. (2017) Zbl1375.35136MR3652210DOI10.1002/mana.201500282
- Antontsev, S. N., Chipot, M., Anisotropic equations: uniqueness and existence results, Differ. Integral Equ. 21 (2008), 401-419. (2008) Zbl1224.35088MR2483260
- Antontsev, S. N., Rodrigues, J. F., 10.1007/s11565-006-0002-9, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 52 (2006), 19-36. (2006) Zbl1117.76004MR2246902DOI10.1007/s11565-006-0002-9
- Barletta, G., Cianchi, A., 10.1017/S0308210516000020, Proc. R. Soc. Edinb., Sect. A, Math. 147 (2017), 25-60. (2017) Zbl1388.35043MR3603525DOI10.1017/S0308210516000020
- Benboubker, M. B., Azroul, E., Barbara, A., Quasilinear elliptic problems with nonstandard growth, Electron. J. Differ. Equ. 2011 (2011), Paper No. 62, 16 pages. (2011) Zbl1221.35165MR2801247
- Benboubker, M. B., Hjiaj, H., Ouaro, S., Entropy solutions to nonlinear elliptic anisotropic problem with variable exponent, J. Appl. Anal. Comput. 4 (2014), 245-270. (2014) Zbl1316.35104MR3226454
- Bendahmane, M., Chrif, M., Manouni, S. El, 10.4171/ZAA/1438, Z. Anal. Anwend. 30 (2011), 341-353. (2011) Zbl1231.35065MR2819499DOI10.4171/ZAA/1438
- Bendahmane, M., Karlsen, K. H., Saad, M., 10.3934/cpaa.2013.12.1201, Commun. Pure Appl. Anal. 12 (2013), 1201-1220. (2013) Zbl1268.35053MR2989682DOI10.3934/cpaa.2013.12.1201
- Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vázquez, J. L., An -theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 22 (1995), 241-273. (1995) Zbl0866.35037MR1354907
- Boccardo, L., Gallouët, T., Marcellini, P., Anisotropic equations in , Differ. Integral Equ. 9 (1996), 209-212. (1996) Zbl0838.35048MR1364043
- Cianchi, A., 10.1080/03605300600634973, Commun. Partial Differ. Equations 32 (2007), 693-717. (2007) Zbl1219.35028MR2334829DOI10.1080/03605300600634973
- Cî{r}stea, F. C., Vétois, J., 10.1080/03605302.2014.969374, Commun. Partial Differ. Equations 40 (2015), 727-765. (2015) Zbl1326.35153MR3299354DOI10.1080/03605302.2014.969374
- Nardo, R. Di, Feo, F., 10.1007/s00013-014-0611-y, Arch. Math. 102 (2014), 141-153. (2014) Zbl1293.35108MR3169023DOI10.1007/s00013-014-0611-y
- Nardo, R. Di, Feo, F., Guibé, O., Uniqueness result for nonlinear anisotropic elliptic equations, Adv. Differ. Equ. 18 (2013), 433-458. (2013) Zbl1272.35092MR3086461
- Diening, L., Harjulehto, P., Hästö, P., Růžička, R. M., 10.1007/978-3-642-18363-8, Lecture Notes in Mathematics 2017. Springer, Berlin (2011). (2011) Zbl1222.46002MR2790542DOI10.1007/978-3-642-18363-8
- DiPerna, R. J., Lions, P.-L., 10.2307/1971423, Ann. Math. (2) 130 (1989), 321-366. (1989) Zbl0698.45010MR1014927DOI10.2307/1971423
- DiPerna, R. J., Lions, P.-L., 10.1007/BF01393835, Invent. Math. 98 (1989), 511-547. (1989) Zbl0696.34049MR1022305DOI10.1007/BF01393835
- Guibé, O., Uniqueness of the renormalized solution to a class of nonlinear elliptic equations, On the Notions of Solution to Nonlinear Elliptic Problems: Results and Developments Quad. Mat. 23. Dipartimento di Matematica, Seconda Università di Napoli, Caserta; Aracne, Rome. (2008), 256-282 A. Alvino et al. (2008) Zbl1216.35036MR2762168
- Guibé, O., Mercaldo, A., 10.1090/S0002-9947-07-04139-6, Trans. Am. Math. Soc. 360 (2008), 643-669. (2008) Zbl1156.35042MR2346466DOI10.1090/S0002-9947-07-04139-6
- Gwiazda, P., Skrzypczak, I., Zatorska-Goldstein, A., 10.1016/j.jde.2017.09.007, J. Differ. Equations 264 (2018), 341-377. (2018) Zbl1376.35046MR3712945DOI10.1016/j.jde.2017.09.007
- Lions, J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Etudes mathematiques. Dunod; Gauthier-Villars, Paris (1969), French. (1969) Zbl0189.40603MR0259693
- Liu, Y., Davidson, R., Taylor, P., 10.1117/12.598713, Smart Structures and Materials: Smart Structures and Integrated Systems. Proceeding of SPIE 5764 (2005), 92-99. (2005) DOI10.1117/12.598713
- Mihăilescu, M., Pucci, P., Rădulescu, V., 10.1016/j.jmaa.2007.09.015, J. Math. Anal. Appl. 340 (2008), 687-698. (2008) Zbl1135.35058MR2376189DOI10.1016/j.jmaa.2007.09.015
- Mokhtari, F., 10.1007/s00009-017-0941-7, Mediterr. J. Math. 14 (2017), Article No. 141, 18 pages. (2017) Zbl1377.35102MR3656509DOI10.1007/s00009-017-0941-7
- Porzio, M. M., On some quasilinear elliptic equations involving Hardy potential, Rend. Mat. Appl., VII. Ser. 27 (2007), 277-297. (2007) Zbl1156.35044MR2398427
- Vétois, J., Existence and regularity for critical anisotropic equations with critical directions, Adv. Differ. Equ. 16 (2011), 61-83. (2011) Zbl1220.35081MR2766894
- Vétois, J., 10.1515/ans-2012-0106, Adv. Nonlinear Stud. 12 (2012), 101-114. (2012) Zbl1247.35007MR2895946DOI10.1515/ans-2012-0106
- Wittbold, P., Zimmermann, A., 10.1016/j.na.2009.11.041, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 2990-3008. (2010) Zbl1185.35088MR2580154DOI10.1016/j.na.2009.11.041
- Youssfi, A., Azroul, E., Hjiaj, H., 10.1007/s00605-013-0516-z, Monatsh. Math. 173 (2014), 107-129. (2014) Zbl1285.35035MR3148663DOI10.1007/s00605-013-0516-z
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.