Existence of solutions for some quasilinear p ( x ) -elliptic problem with Hardy potential

Elhoussine Azroul; Mohammed Bouziani; Hassane Hjiaj; Ahmed Youssfi

Mathematica Bohemica (2019)

  • Volume: 144, Issue: 3, page 299-324
  • ISSN: 0862-7959

Abstract

top
We consider the anisotropic quasilinear elliptic Dirichlet problem - i = 1 N D i a i ( x , u , u ) + | u | s ( x ) - 1 u = f + λ | u | p 0 ( x ) - 2 u | x | p 0 ( x ) in Ω , u = 0 on Ω , where Ω is an open bounded subset of N containing the origin. We show the existence of entropy solution for this equation where the data f is assumed to be in L 1 ( Ω ) and λ is a positive constant.

How to cite

top

Azroul, Elhoussine, et al. "Existence of solutions for some quasilinear $\vec{p}(x)$-elliptic problem with Hardy potential." Mathematica Bohemica 144.3 (2019): 299-324. <http://eudml.org/doc/294314>.

@article{Azroul2019,
abstract = {We consider the anisotropic quasilinear elliptic Dirichlet problem \[ \{\left\lbrace \begin\{array\}\{ll\} \displaystyle -\sum \_\{i=1\}^\{N\} D^\{i\} a\_\{i\}(x,u,\nabla u) + |u|^\{s(x)-1\}u= f +\lambda \frac\{|u|^\{p\_\{0\}(x)-2\}u\}\{|x|^\{p\_\{0\}(x)\}\}&\text\{in\}\ \Omega ,\\ u = 0 & \text\{on\}\ \partial \Omega , \end\{array\}\right.\} \] where $\Omega $ is an open bounded subset of $\mathbb \{R\}^N$ containing the origin. We show the existence of entropy solution for this equation where the data $f$ is assumed to be in $L^\{1\}(\Omega )$ and $\lambda $ is a positive constant.},
author = {Azroul, Elhoussine, Bouziani, Mohammed, Hjiaj, Hassane, Youssfi, Ahmed},
journal = {Mathematica Bohemica},
keywords = {anisotropic variable exponent Sobolev space; quasilinear elliptic equation; Hardy potential; entropy solution; $L^\{1\}$-data},
language = {eng},
number = {3},
pages = {299-324},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of solutions for some quasilinear $\vec\{p\}(x)$-elliptic problem with Hardy potential},
url = {http://eudml.org/doc/294314},
volume = {144},
year = {2019},
}

TY - JOUR
AU - Azroul, Elhoussine
AU - Bouziani, Mohammed
AU - Hjiaj, Hassane
AU - Youssfi, Ahmed
TI - Existence of solutions for some quasilinear $\vec{p}(x)$-elliptic problem with Hardy potential
JO - Mathematica Bohemica
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 144
IS - 3
SP - 299
EP - 324
AB - We consider the anisotropic quasilinear elliptic Dirichlet problem \[ {\left\lbrace \begin{array}{ll} \displaystyle -\sum _{i=1}^{N} D^{i} a_{i}(x,u,\nabla u) + |u|^{s(x)-1}u= f +\lambda \frac{|u|^{p_{0}(x)-2}u}{|x|^{p_{0}(x)}}&\text{in}\ \Omega ,\\ u = 0 & \text{on}\ \partial \Omega , \end{array}\right.} \] where $\Omega $ is an open bounded subset of $\mathbb {R}^N$ containing the origin. We show the existence of entropy solution for this equation where the data $f$ is assumed to be in $L^{1}(\Omega )$ and $\lambda $ is a positive constant.
LA - eng
KW - anisotropic variable exponent Sobolev space; quasilinear elliptic equation; Hardy potential; entropy solution; $L^{1}$-data
UR - http://eudml.org/doc/294314
ER -

References

top
  1. Abdellaoui, B., Peral, I., Primo, A., 10.1016/j.jde.2007.05.010, J. Differ. Equations 239 (2007), 386-416. (2007) Zbl1331.35128MR2344278DOI10.1016/j.jde.2007.05.010
  2. Alberico, A., Blasio, G. Di, Feo, F., 10.1002/mana.201500282, Math. Nachr. 290 (2017), 986-1003. (2017) Zbl1375.35136MR3652210DOI10.1002/mana.201500282
  3. Antontsev, S. N., Chipot, M., Anisotropic equations: uniqueness and existence results, Differ. Integral Equ. 21 (2008), 401-419. (2008) Zbl1224.35088MR2483260
  4. Antontsev, S. N., Rodrigues, J. F., 10.1007/s11565-006-0002-9, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 52 (2006), 19-36. (2006) Zbl1117.76004MR2246902DOI10.1007/s11565-006-0002-9
  5. Barletta, G., Cianchi, A., 10.1017/S0308210516000020, Proc. R. Soc. Edinb., Sect. A, Math. 147 (2017), 25-60. (2017) Zbl1388.35043MR3603525DOI10.1017/S0308210516000020
  6. Benboubker, M. B., Azroul, E., Barbara, A., Quasilinear elliptic problems with nonstandard growth, Electron. J. Differ. Equ. 2011 (2011), Paper No. 62, 16 pages. (2011) Zbl1221.35165MR2801247
  7. Benboubker, M. B., Hjiaj, H., Ouaro, S., Entropy solutions to nonlinear elliptic anisotropic problem with variable exponent, J. Appl. Anal. Comput. 4 (2014), 245-270. (2014) Zbl1316.35104MR3226454
  8. Bendahmane, M., Chrif, M., Manouni, S. El, 10.4171/ZAA/1438, Z. Anal. Anwend. 30 (2011), 341-353. (2011) Zbl1231.35065MR2819499DOI10.4171/ZAA/1438
  9. Bendahmane, M., Karlsen, K. H., Saad, M., 10.3934/cpaa.2013.12.1201, Commun. Pure Appl. Anal. 12 (2013), 1201-1220. (2013) Zbl1268.35053MR2989682DOI10.3934/cpaa.2013.12.1201
  10. Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vázquez, J. L., An L 1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 22 (1995), 241-273. (1995) Zbl0866.35037MR1354907
  11. Boccardo, L., Gallouët, T., Marcellini, P., Anisotropic equations in L 1 , Differ. Integral Equ. 9 (1996), 209-212. (1996) Zbl0838.35048MR1364043
  12. Cianchi, A., 10.1080/03605300600634973, Commun. Partial Differ. Equations 32 (2007), 693-717. (2007) Zbl1219.35028MR2334829DOI10.1080/03605300600634973
  13. Cî{r}stea, F. C., Vétois, J., 10.1080/03605302.2014.969374, Commun. Partial Differ. Equations 40 (2015), 727-765. (2015) Zbl1326.35153MR3299354DOI10.1080/03605302.2014.969374
  14. Nardo, R. Di, Feo, F., 10.1007/s00013-014-0611-y, Arch. Math. 102 (2014), 141-153. (2014) Zbl1293.35108MR3169023DOI10.1007/s00013-014-0611-y
  15. Nardo, R. Di, Feo, F., Guibé, O., Uniqueness result for nonlinear anisotropic elliptic equations, Adv. Differ. Equ. 18 (2013), 433-458. (2013) Zbl1272.35092MR3086461
  16. Diening, L., Harjulehto, P., Hästö, P., Růžička, R. M., 10.1007/978-3-642-18363-8, Lecture Notes in Mathematics 2017. Springer, Berlin (2011). (2011) Zbl1222.46002MR2790542DOI10.1007/978-3-642-18363-8
  17. DiPerna, R. J., Lions, P.-L., 10.2307/1971423, Ann. Math. (2) 130 (1989), 321-366. (1989) Zbl0698.45010MR1014927DOI10.2307/1971423
  18. DiPerna, R. J., Lions, P.-L., 10.1007/BF01393835, Invent. Math. 98 (1989), 511-547. (1989) Zbl0696.34049MR1022305DOI10.1007/BF01393835
  19. Guibé, O., Uniqueness of the renormalized solution to a class of nonlinear elliptic equations, On the Notions of Solution to Nonlinear Elliptic Problems: Results and Developments Quad. Mat. 23. Dipartimento di Matematica, Seconda Università di Napoli, Caserta; Aracne, Rome. (2008), 256-282 A. Alvino et al. (2008) Zbl1216.35036MR2762168
  20. Guibé, O., Mercaldo, A., 10.1090/S0002-9947-07-04139-6, Trans. Am. Math. Soc. 360 (2008), 643-669. (2008) Zbl1156.35042MR2346466DOI10.1090/S0002-9947-07-04139-6
  21. Gwiazda, P., Skrzypczak, I., Zatorska-Goldstein, A., 10.1016/j.jde.2017.09.007, J. Differ. Equations 264 (2018), 341-377. (2018) Zbl1376.35046MR3712945DOI10.1016/j.jde.2017.09.007
  22. Lions, J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Etudes mathematiques. Dunod; Gauthier-Villars, Paris (1969), French. (1969) Zbl0189.40603MR0259693
  23. Liu, Y., Davidson, R., Taylor, P., 10.1117/12.598713, Smart Structures and Materials: Smart Structures and Integrated Systems. Proceeding of SPIE 5764 (2005), 92-99. (2005) DOI10.1117/12.598713
  24. Mihăilescu, M., Pucci, P., Rădulescu, V., 10.1016/j.jmaa.2007.09.015, J. Math. Anal. Appl. 340 (2008), 687-698. (2008) Zbl1135.35058MR2376189DOI10.1016/j.jmaa.2007.09.015
  25. Mokhtari, F., 10.1007/s00009-017-0941-7, Mediterr. J. Math. 14 (2017), Article No. 141, 18 pages. (2017) Zbl1377.35102MR3656509DOI10.1007/s00009-017-0941-7
  26. Porzio, M. M., On some quasilinear elliptic equations involving Hardy potential, Rend. Mat. Appl., VII. Ser. 27 (2007), 277-297. (2007) Zbl1156.35044MR2398427
  27. Vétois, J., Existence and regularity for critical anisotropic equations with critical directions, Adv. Differ. Equ. 16 (2011), 61-83. (2011) Zbl1220.35081MR2766894
  28. Vétois, J., 10.1515/ans-2012-0106, Adv. Nonlinear Stud. 12 (2012), 101-114. (2012) Zbl1247.35007MR2895946DOI10.1515/ans-2012-0106
  29. Wittbold, P., Zimmermann, A., 10.1016/j.na.2009.11.041, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 2990-3008. (2010) Zbl1185.35088MR2580154DOI10.1016/j.na.2009.11.041
  30. Youssfi, A., Azroul, E., Hjiaj, H., 10.1007/s00605-013-0516-z, Monatsh. Math. 173 (2014), 107-129. (2014) Zbl1285.35035MR3148663DOI10.1007/s00605-013-0516-z

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.