Binary and ternary relations

Vítězslav Novák; Miroslav Novotný

Mathematica Bohemica (1992)

  • Volume: 117, Issue: 3, page 283-292
  • ISSN: 0862-7959

Abstract

top
Two operators are constructed which make it possible to transform ternary relations into binary relations defined on binary relations and vice versa. A possible graphical representation of ternary relations is described.

How to cite

top

Novák, Vítězslav, and Novotný, Miroslav. "Binary and ternary relations." Mathematica Bohemica 117.3 (1992): 283-292. <http://eudml.org/doc/29432>.

@article{Novák1992,
abstract = {Two operators are constructed which make it possible to transform ternary relations into binary relations defined on binary relations and vice versa. A possible graphical representation of ternary relations is described.},
author = {Novák, Vítězslav, Novotný, Miroslav},
journal = {Mathematica Bohemica},
keywords = {cyclically ordered set; binary relation; binding relation; double binary structure; ternary structure; ternary relation; cyclically ordered set; binary relation; binding relation; double binary structure; ternary structure; ternary relation},
language = {eng},
number = {3},
pages = {283-292},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Binary and ternary relations},
url = {http://eudml.org/doc/29432},
volume = {117},
year = {1992},
}

TY - JOUR
AU - Novák, Vítězslav
AU - Novotný, Miroslav
TI - Binary and ternary relations
JO - Mathematica Bohemica
PY - 1992
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 117
IS - 3
SP - 283
EP - 292
AB - Two operators are constructed which make it possible to transform ternary relations into binary relations defined on binary relations and vice versa. A possible graphical representation of ternary relations is described.
LA - eng
KW - cyclically ordered set; binary relation; binding relation; double binary structure; ternary structure; ternary relation; cyclically ordered set; binary relation; binding relation; double binary structure; ternary structure; ternary relation
UR - http://eudml.org/doc/29432
ER -

References

top
  1. P. Alles, Erweiterungen, Diagramme und Dimension zyklischer Oгdnugen, Doctoral Thesis, Darmstadt, 1986. (1986) 
  2. M. Altwegg, 10.1007/BF02567030, Comment. Math. Helv. 24 (1950), 149-155. (1950) MR0037279DOI10.1007/BF02567030
  3. J. Jаkubík G. Pringerová, Representations of cyclically ordered groups, Čas. pěst. mat. 113 (1988), 184-196. (1988) MR0949044
  4. M. Kolibiаr, On the relation "between" in lattices, Mat. fyz. časopis 5 (1955), 162-171. (1955) MR0078336
  5. V. Novák, Cyclically ordered sets, Czech. Math. Journ. 32 (1982), 460-473. (1982) MR0669787
  6. A. Quittiot, 10.1016/S0195-6698(89)80022-8, Europ. J. Combinatorics 10 (1989), 477-488. (1989) MR1014556DOI10.1016/S0195-6698(89)80022-8
  7. M. Sekаninа, Graphs and betweennes, Matem. čas. 25 (1975), 41-47. (1975) MR0422094
  8. A. I. Zаbаrinа, To the theory of cyclically ordered groups, (in Russian), Matem. zametki 31 (1982), 3-12. (1982) MR0646907
  9. S. D. Želevа, On cyclically ordered groups, (in Russian), Sibiгskij mat. žurn. 11 (1976), 1046-1051. (1976) MR0422106

Citations in EuDML Documents

top
  1. Vítězslav Novák, Ternary structures and partial semigroups
  2. Vítězslav Novák, On representation of ternary structures
  3. Jiří Karásek, Cardinal and ordinal arithmetics of -ary relational systems and -ary ordered sets
  4. Jiří Klaška, Transitivity and partial order
  5. Miroslav Novotný, Construction of all homomorphisms of groupoids
  6. Jiří Karásek, Double -ary relational structures

NotesEmbed ?

top

You must be logged in to post comments.