Dependence of hidden attractors on non-linearity and Hamilton energy in a class of chaotic system
Ge Zhang; Chunni Wang; Ahmed Alsaedi; Jun Ma; Guodong Ren
Kybernetika (2018)
- Volume: 54, Issue: 4, page 648-663
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topZhang, Ge, et al. "Dependence of hidden attractors on non-linearity and Hamilton energy in a class of chaotic system." Kybernetika 54.4 (2018): 648-663. <http://eudml.org/doc/294322>.
@article{Zhang2018,
abstract = {Non-linearity is essential for occurrence of chaos in dynamical system. The size of phase space and formation of attractors are much dependent on the setting of nonlinear function and parameters. In this paper, a three-variable dynamical system is controlled by different nonlinear function thus a class of chaotic system is presented, the Hamilton function is calculated to find the statistical dynamical property of the improved dynamical systems composed of hidden attractors. The standard dynamical analysis is confirmed in numerical studies, and the dependence of attractors and Hamilton energy on non-linearity selection is discussed. It is found that lower average Hamilton energy can be detected when intensity of nonlinear function is enhanced. It indicates that non-linearity can decrease the energy cost triggering for dynamical behaviors.},
author = {Zhang, Ge, Wang, Chunni, Alsaedi, Ahmed, Ma, Jun, Ren, Guodong},
journal = {Kybernetika},
keywords = {Helmholtz theorem; chaos; hidden attractor; bifurcation; Hamilton energy},
language = {eng},
number = {4},
pages = {648-663},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Dependence of hidden attractors on non-linearity and Hamilton energy in a class of chaotic system},
url = {http://eudml.org/doc/294322},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Zhang, Ge
AU - Wang, Chunni
AU - Alsaedi, Ahmed
AU - Ma, Jun
AU - Ren, Guodong
TI - Dependence of hidden attractors on non-linearity and Hamilton energy in a class of chaotic system
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 4
SP - 648
EP - 663
AB - Non-linearity is essential for occurrence of chaos in dynamical system. The size of phase space and formation of attractors are much dependent on the setting of nonlinear function and parameters. In this paper, a three-variable dynamical system is controlled by different nonlinear function thus a class of chaotic system is presented, the Hamilton function is calculated to find the statistical dynamical property of the improved dynamical systems composed of hidden attractors. The standard dynamical analysis is confirmed in numerical studies, and the dependence of attractors and Hamilton energy on non-linearity selection is discussed. It is found that lower average Hamilton energy can be detected when intensity of nonlinear function is enhanced. It indicates that non-linearity can decrease the energy cost triggering for dynamical behaviors.
LA - eng
KW - Helmholtz theorem; chaos; hidden attractor; bifurcation; Hamilton energy
UR - http://eudml.org/doc/294322
ER -
References
top- Ahmad, W. M., Sprott, J. C., 10.1016/s0960-0779(02)00438-1, Chaos 6 (2003), 339-351. DOI10.1016/s0960-0779(02)00438-1
- Aihara, K., Takabe, T., Toyoda, M., 10.1016/0375-9601(90)90136-c, Phys. Lett. A 144 (2001), 333-340. MR1045128DOI10.1016/0375-9601(90)90136-c
- Aram, Z., Jafari, S., al., J. Ma et, 10.1016/j.cnsns.2016.08.025, Commun. Nonlinear Sci. Numer. Simulat. 44 (2017), 449-459. MR3554829DOI10.1016/j.cnsns.2016.08.025
- Bao, B. C., Xu, J. P., Liu, Z., 10.1088/0256-307x/27/7/070504, Chinese Phys. Lett. 27 (2010), 070504. DOI10.1088/0256-307x/27/7/070504
- Barati, K., Jafari, S., al., J. C. Sprott et, 10.1142/s0218127416300342, Int. J. Bifurcat. Chaos 26 (2016), 1630034. MR3574802DOI10.1142/s0218127416300342
- Barrow-Green, J., Poincaré and the three body problem., Amer. Math. Soc. 2 (1997). MR1415387
- Chua, L., 10.1109/tct.1971.1083337, IEEE Trans. Circ. Theory 18 (1971), 507-519. DOI10.1109/tct.1971.1083337
- Dantsev, D., 10.1142/s0218127402004620, Int. J. Bifurcat. Chaos 12 (2002), 659-661. DOI10.1142/s0218127402004620
- Ditto, W. L., Rauseo, S. N., Spano, M. L., 10.1103/physrevlett.65.3211, Phys. Rev. Lett. 65 (1991), 3211-3214. DOI10.1103/physrevlett.65.3211
- Dudkowski, D., Jafari, S., al., T. Kapitaniak et, 10.1016/j.physrep.2016.05.002, Phys. Rep. 637 (2016), 1-50. MR3510463DOI10.1016/j.physrep.2016.05.002
- Ermakov, I. V., Kingni, S. T., al., V. Z. Tronciu et, 10.1016/j.optcom.2012.08.063, Optics Commun. 286 (2013), 265-272. DOI10.1016/j.optcom.2012.08.063
- Feigenbaum, M. J., 10.1016/0375-9601(79)90227-5, Phys. Lett. A 74 (1979), 375-378. MR0591635DOI10.1016/0375-9601(79)90227-5
- Garfinkel, A., Spano, M. L., al., W. L. Ditto et, 10.1126/science.1519060, Science 257 (1992), 1230-1235. DOI10.1126/science.1519060
- Gotthans, T., Petržela, J., 10.1007/s11071-015-2056-7, Nonlinear Dyn. 81 (2015), 1141-1149. MR3367144DOI10.1007/s11071-015-2056-7
- Gotthans, T., Sprott, J. C., Petržela, J., 10.1142/s0218127416501376, Int. J. Bifurcat. Chaos 26 (2016), 1650137. MR3533673DOI10.1142/s0218127416501376
- Guo, Y. L., Qi, G. Y., Hamam, Y., 10.1007/s11071-016-2861-7, Nonlinear Dyn. 85 (2016), 2765-2775. MR3367161DOI10.1007/s11071-016-2861-7
- Hu, X., Liu, C., al., L. Liu et, 10.1007/s11071-016-2989-5, Nonlinear Dyn. 86 (2016), 1725-1734. DOI10.1007/s11071-016-2989-5
- Itoh, M., Chua, L. O., 10.1142/s0218127408022354, Int. J. Bifurcat. Chaos 8 (2008), 3183-3206. MR2487909DOI10.1142/s0218127408022354
- Jafari, M. A., Mliki, E., al., A. Akgul et, 10.1007/s11071-017-3378-4, Nonlinear Dyn. 88 (2017), 2303-2317. MR3650512DOI10.1007/s11071-017-3378-4
- Jafari, S., Sprott, J. C., 10.1016/j.chaos.2013.08.018, Chaos Solutons Fractals 57 (2013), 79-84. Zbl1355.37056MR3128600DOI10.1016/j.chaos.2013.08.018
- Jafari, S., Sprott, J. C., al., V. T. Pham et, 10.1007/s11071-016-2968-x, Nonlinear Dyn. 86 (2016), 1349-1358. DOI10.1007/s11071-016-2968-x
- Jia, B., Gu, H. G., al., L. Li et, 10.1007/s11571-011-9184-7, Cogn. Neurodyn. 6 (2012), 89-106. DOI10.1007/s11571-011-9184-7
- Kennedy, M. P., 10.1109/81.331536, IEEE Trans. Circ. Syst. I 41 (1994), 711-774. DOI10.1109/81.331536
- Kobe, D. H., 10.1119/1.14562, Amer. J. Physics 54 (1986), 552-554. DOI10.1119/1.14562
- Kwok, H. S., Tang, W. K. S., 10.1016/j.chaos.2005.11.090, Chaos Solitons Fractals 32 (2007), 1518-1529. MR2286314DOI10.1016/j.chaos.2005.11.090
- Leonov, G. A., Kuznetsov, N. V., Vagaitsev, V. I., 10.1016/j.physd.2012.05.016, Physica D 241 (2012), 1482-1486. MR2957820DOI10.1016/j.physd.2012.05.016
- Leonov, G. A., Kuznetsov, N. V., Vagaitsev, V. I., 10.1016/j.physleta.2011.04.037, Phys. Lett. A 375 (2011), 2230-2233. Zbl1242.34102MR2800438DOI10.1016/j.physleta.2011.04.037
- Leonov, G. A., Kuznetsov, N. V., Vagaitsev, V. I., 10.1016/j.physd.2012.05.016, Physica D 241 (2012), 1482-1486. MR2957820DOI10.1016/j.physd.2012.05.016
- Leonov, G. A., Kuznetsov, N. V., Mokaev, T. N., 10.1016/j.cnsns.2015.04.007, Commun. Nonlinear Sci. Numer. Simulat. 28 (2015), 166-176. MR3348101DOI10.1016/j.cnsns.2015.04.007
- Li, C., Li, S., al., M. Asim et, 10.1016/j.imavis.2008.12.008, Image Vision Computing 27 (2009), 1371-1381. DOI10.1016/j.imavis.2008.12.008
- Li, Y. Y., G., H., Gu, 10.1007/s11071-016-3210-6, Nonlinear Dyn. 87 (2017), 2541-2562. DOI10.1007/s11071-016-3210-6
- Li, X., Li, C., Lee, I. K., 10.1016/j.sigpro.2015.11.017 DOI10.1016/j.sigpro.2015.11.017
- Li, F., Yao, C. G., 10.1007/s11071-016-2646-z, Nonlinear Dyn. 84 (2016), 2305-2315. MR3504299DOI10.1007/s11071-016-2646-z
- Li, T. Y., Yorke, J. Y., 10.2307/2318254, Amer. Math. Monthly 82 (1975), 985-992. MR0385028DOI10.2307/2318254
- Lorenz, E. N., 10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2, J. Atmospher. Sci. 20 (1963), 130-141. DOI10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
- Lv, M., Ma, J., 10.1016/j.neucom.2016.05.004, Neurocomputing 205 (2016), 375-381. DOI10.1016/j.neucom.2016.05.004
- Lv, M., Wang, C., al., G. Ren et, 10.1007/s11071-016-2773-6, Nonlinear Dyn. 85 (2016), 1479-1490. DOI10.1007/s11071-016-2773-6
- Ma, J., Wu, X. Y., al., R. T. Chu et, 10.1007/s11071-014-1260-1, Nonlinear Dyn. 76 (2014), 1951-1962. DOI10.1007/s11071-014-1260-1
- Ma, J., Li, A. B., al., Z. S. Pu et, 10.1007/s11071-010-9739-x, Nonlinear Dyn. 62 (2010), 535-541. DOI10.1007/s11071-010-9739-x
- Ma, J., Mi, L., al., P. Zhou et, 10.1016/j.amc.2017.03.002, Appl. Math. Comput. 307 (2017), 321-328. MR3632742DOI10.1016/j.amc.2017.03.002
- Ma, J., Song, X. L., al., J. Tang et, 10.1016/j.neucom.2015.04.056, Neurocomputing 167 (2015), 378-389. DOI10.1016/j.neucom.2015.04.056
- Ma, J., Wu, F., al., W. Jin et, 10.1063/1.4983469, Chaos 27 (2017), 481-495. MR3650956DOI10.1063/1.4983469
- Ma, J., Wu, F. Q., al., G. D. Ren et, 10.1016/j.amc.2016.11.004, Appl. Math. Comput. 298 (2017), 65-76. MR3582328DOI10.1016/j.amc.2016.11.004
- Ma, J., Wu, F., Wang, C., 10.1142/s0217979216502519, Int. J. Mod Phys. B 31 (2017), 1650251. MR3599028DOI10.1142/s0217979216502519
- Ma, J., Zhang, A. H., al., Y. F. Xia et, 10.1016/j.amc.2009.10.020, Appl. Math. Comput. 215 (2010), 3318-3326. MR2576820DOI10.1016/j.amc.2009.10.020
- May, R. M., 10.1038/261459a0, Nature 261 (1976), 459-467. Zbl0527.58025DOI10.1038/261459a0
- Molaie, M., Jafari, S., al., J. C. Sprott et, 10.1142/s0218127413501885, Int. J. Bifurcat. Chaos (2013), 1350188. MR3150373DOI10.1142/s0218127413501885
- Muthuswamy, B., 10.1142/s0218127410026514, Int. J. Bifurcat. Chaos 20 (2010), 1335-1350. DOI10.1142/s0218127410026514
- Pham, V- T., Jafari, S., al., X. Wang X et, 10.1142/s0218127416500693, Int. J. Bifurcat. Chaos 26 (2016), 1650069. MR3494063DOI10.1142/s0218127416500693
- Pham, V. T., Volos, C., Jafari, S., 10.1142/s021812741650139x, Int. J. Bifurcat. Chaos 26 (2016), 1650139. MR3533675DOI10.1142/s021812741650139x
- Piper, J. R., Sprott, J. C., 10.1109/tcsii.2010.2058493, IEEE Trans. Circ. Syst. II 57 (2010), 730-734. DOI10.1109/tcsii.2010.2058493
- Qi, G. Y., Chen, G. R., 10.1007/s11071-015-2075-4, Nonlinear Dyn. 81 (2015), 1381-1392. MR3367161DOI10.1007/s11071-015-2075-4
- Ren, G. D., Xu, Y., Wang, C. N., 10.1007/s11071-015-2075-4, Nonlinear Dyn. 88 (2017), 893-901. DOI10.1007/s11071-015-2075-4
- Ryeu, J. K., Aihara, K., Tsuda, I., 10.1103/physreve.64.046202, Phys. Rev. E 64 (2001), 046202. DOI10.1103/physreve.64.046202
- Shaw, R., The dripping faucet as a model chaotic system., Aerial Press, Santa Cruz 1984. MR1101814
- Song, X. L., Jin, W. Y., Ma, J., 10.1088/1674-1056/24/12/128710, Chinese Phys. B 24 (2015), 604-609. DOI10.1088/1674-1056/24/12/128710
- Strukov, D. B., Snider, G. S., al., D. R. Stewart et, 10.1038/nature06932, Nature 453( 2008), 80-83. DOI10.1038/nature06932
- Wang, Z. H., Cang, S. J., al., E. O. Ochola et, 10.1007/s11071-011-0284-z, Nonlinear Dyn. 69 (2012), 531-537. MR2929891DOI10.1007/s11071-011-0284-z
- Wang, X., Chen, G. R., 10.1007/s11071-012-0669-7, Nonlinear Dyn. 71 (2013), 429-436. MR3015249DOI10.1007/s11071-012-0669-7
- Wang, C., Chu, R., Ma, J., 10.1002/cplx.21572, Complexity 21 (2015), 370-378. MR3407876DOI10.1002/cplx.21572
- Wang, S., Kuang, J., al., J. Li et, 10.1103/physreve.66.065202, Phys. Rev. E 66 (2002), 065202. DOI10.1103/physreve.66.065202
- Wang, C. N., Ma, J., al., Y. Liu et, 10.1007/s11071-011-9965-x, Nonlinear Dyn. 67 (2012), 139-146. DOI10.1007/s11071-011-9965-x
- Wang, C. N., Wang, Y., Ma, J., Calculation of Hamilton energy function of dynamical system by using Helmholtz theorem., Acta Physica Sinica 65 (2016), 240501.
- Wolf, A., Swift, J. B., al., H. L. Swinney et, 10.1016/0167-2789(85)90011-9, Physica D 16 (1985), 285-317. MR0805706DOI10.1016/0167-2789(85)90011-9
- Wu, C. W., Chua, L. O., 10.1142/s0218127493001288, Int. J. Bifurcat. Chaos 3 (1993), 1619-1627. DOI10.1142/s0218127493001288
- Wu, X. Y., Ma, J., al., L. H. Yuan et, 10.1007/s11071-013-1053-y, Nonlinear Dyn. 75 (2014), 113-126. MR3144840DOI10.1007/s11071-013-1053-y
- Yalcin, M. E, 10.1016/j.chaos.2006.04.058, Chaos Solutons Fractals 34 (2007), 1659-1666. DOI10.1016/j.chaos.2006.04.058
- Yang, T., A survey of chaotic secure communication systems., Int. J. Comput. Cogn. 2 (2004), 81-130.
- Zarei, A., 10.1007/s11071-015-2013-5, Nonlinear Dyn. 81 (2015), 585-605. MR3355053DOI10.1007/s11071-015-2013-5
- Zarei, A., Tavakoli, S., 10.1016/j.amc.2016.07.023, Appl. Math. Comput. 291 (2016), 323-339. MR3534407DOI10.1016/j.amc.2016.07.023
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.