Dependence of hidden attractors on non-linearity and Hamilton energy in a class of chaotic system

Ge Zhang; Chunni Wang; Ahmed Alsaedi; Jun Ma; Guodong Ren

Kybernetika (2018)

  • Volume: 54, Issue: 4, page 648-663
  • ISSN: 0023-5954

Abstract

top
Non-linearity is essential for occurrence of chaos in dynamical system. The size of phase space and formation of attractors are much dependent on the setting of nonlinear function and parameters. In this paper, a three-variable dynamical system is controlled by different nonlinear function thus a class of chaotic system is presented, the Hamilton function is calculated to find the statistical dynamical property of the improved dynamical systems composed of hidden attractors. The standard dynamical analysis is confirmed in numerical studies, and the dependence of attractors and Hamilton energy on non-linearity selection is discussed. It is found that lower average Hamilton energy can be detected when intensity of nonlinear function is enhanced. It indicates that non-linearity can decrease the energy cost triggering for dynamical behaviors.

How to cite

top

Zhang, Ge, et al. "Dependence of hidden attractors on non-linearity and Hamilton energy in a class of chaotic system." Kybernetika 54.4 (2018): 648-663. <http://eudml.org/doc/294322>.

@article{Zhang2018,
abstract = {Non-linearity is essential for occurrence of chaos in dynamical system. The size of phase space and formation of attractors are much dependent on the setting of nonlinear function and parameters. In this paper, a three-variable dynamical system is controlled by different nonlinear function thus a class of chaotic system is presented, the Hamilton function is calculated to find the statistical dynamical property of the improved dynamical systems composed of hidden attractors. The standard dynamical analysis is confirmed in numerical studies, and the dependence of attractors and Hamilton energy on non-linearity selection is discussed. It is found that lower average Hamilton energy can be detected when intensity of nonlinear function is enhanced. It indicates that non-linearity can decrease the energy cost triggering for dynamical behaviors.},
author = {Zhang, Ge, Wang, Chunni, Alsaedi, Ahmed, Ma, Jun, Ren, Guodong},
journal = {Kybernetika},
keywords = {Helmholtz theorem; chaos; hidden attractor; bifurcation; Hamilton energy},
language = {eng},
number = {4},
pages = {648-663},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Dependence of hidden attractors on non-linearity and Hamilton energy in a class of chaotic system},
url = {http://eudml.org/doc/294322},
volume = {54},
year = {2018},
}

TY - JOUR
AU - Zhang, Ge
AU - Wang, Chunni
AU - Alsaedi, Ahmed
AU - Ma, Jun
AU - Ren, Guodong
TI - Dependence of hidden attractors on non-linearity and Hamilton energy in a class of chaotic system
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 4
SP - 648
EP - 663
AB - Non-linearity is essential for occurrence of chaos in dynamical system. The size of phase space and formation of attractors are much dependent on the setting of nonlinear function and parameters. In this paper, a three-variable dynamical system is controlled by different nonlinear function thus a class of chaotic system is presented, the Hamilton function is calculated to find the statistical dynamical property of the improved dynamical systems composed of hidden attractors. The standard dynamical analysis is confirmed in numerical studies, and the dependence of attractors and Hamilton energy on non-linearity selection is discussed. It is found that lower average Hamilton energy can be detected when intensity of nonlinear function is enhanced. It indicates that non-linearity can decrease the energy cost triggering for dynamical behaviors.
LA - eng
KW - Helmholtz theorem; chaos; hidden attractor; bifurcation; Hamilton energy
UR - http://eudml.org/doc/294322
ER -

References

top
  1. Ahmad, W. M., Sprott, J. C., 10.1016/s0960-0779(02)00438-1, Chaos 6 (2003), 339-351. DOI10.1016/s0960-0779(02)00438-1
  2. Aihara, K., Takabe, T., Toyoda, M., 10.1016/0375-9601(90)90136-c, Phys. Lett. A 144 (2001), 333-340. MR1045128DOI10.1016/0375-9601(90)90136-c
  3. Aram, Z., Jafari, S., al., J. Ma et, 10.1016/j.cnsns.2016.08.025, Commun. Nonlinear Sci. Numer. Simulat. 44 (2017), 449-459. MR3554829DOI10.1016/j.cnsns.2016.08.025
  4. Bao, B. C., Xu, J. P., Liu, Z., 10.1088/0256-307x/27/7/070504, Chinese Phys. Lett. 27 (2010), 070504. DOI10.1088/0256-307x/27/7/070504
  5. Barati, K., Jafari, S., al., J. C. Sprott et, 10.1142/s0218127416300342, Int. J. Bifurcat. Chaos 26 (2016), 1630034. MR3574802DOI10.1142/s0218127416300342
  6. Barrow-Green, J., Poincaré and the three body problem., Amer. Math. Soc. 2 (1997). MR1415387
  7. Chua, L., 10.1109/tct.1971.1083337, IEEE Trans. Circ. Theory 18 (1971), 507-519. DOI10.1109/tct.1971.1083337
  8. Dantsev, D., 10.1142/s0218127402004620, Int. J. Bifurcat. Chaos 12 (2002), 659-661. DOI10.1142/s0218127402004620
  9. Ditto, W. L., Rauseo, S. N., Spano, M. L., 10.1103/physrevlett.65.3211, Phys. Rev. Lett. 65 (1991), 3211-3214. DOI10.1103/physrevlett.65.3211
  10. Dudkowski, D., Jafari, S., al., T. Kapitaniak et, 10.1016/j.physrep.2016.05.002, Phys. Rep. 637 (2016), 1-50. MR3510463DOI10.1016/j.physrep.2016.05.002
  11. Ermakov, I. V., Kingni, S. T., al., V. Z. Tronciu et, 10.1016/j.optcom.2012.08.063, Optics Commun. 286 (2013), 265-272. DOI10.1016/j.optcom.2012.08.063
  12. Feigenbaum, M. J., 10.1016/0375-9601(79)90227-5, Phys. Lett. A 74 (1979), 375-378. MR0591635DOI10.1016/0375-9601(79)90227-5
  13. Garfinkel, A., Spano, M. L., al., W. L. Ditto et, 10.1126/science.1519060, Science 257 (1992), 1230-1235. DOI10.1126/science.1519060
  14. Gotthans, T., Petržela, J., 10.1007/s11071-015-2056-7, Nonlinear Dyn. 81 (2015), 1141-1149. MR3367144DOI10.1007/s11071-015-2056-7
  15. Gotthans, T., Sprott, J. C., Petržela, J., 10.1142/s0218127416501376, Int. J. Bifurcat. Chaos 26 (2016), 1650137. MR3533673DOI10.1142/s0218127416501376
  16. Guo, Y. L., Qi, G. Y., Hamam, Y., 10.1007/s11071-016-2861-7, Nonlinear Dyn. 85 (2016), 2765-2775. MR3367161DOI10.1007/s11071-016-2861-7
  17. Hu, X., Liu, C., al., L. Liu et, 10.1007/s11071-016-2989-5, Nonlinear Dyn. 86 (2016), 1725-1734. DOI10.1007/s11071-016-2989-5
  18. Itoh, M., Chua, L. O., 10.1142/s0218127408022354, Int. J. Bifurcat. Chaos 8 (2008), 3183-3206. MR2487909DOI10.1142/s0218127408022354
  19. Jafari, M. A., Mliki, E., al., A. Akgul et, 10.1007/s11071-017-3378-4, Nonlinear Dyn. 88 (2017), 2303-2317. MR3650512DOI10.1007/s11071-017-3378-4
  20. Jafari, S., Sprott, J. C., 10.1016/j.chaos.2013.08.018, Chaos Solutons Fractals 57 (2013), 79-84. Zbl1355.37056MR3128600DOI10.1016/j.chaos.2013.08.018
  21. Jafari, S., Sprott, J. C., al., V. T. Pham et, 10.1007/s11071-016-2968-x, Nonlinear Dyn. 86 (2016), 1349-1358. DOI10.1007/s11071-016-2968-x
  22. Jia, B., Gu, H. G., al., L. Li et, 10.1007/s11571-011-9184-7, Cogn. Neurodyn. 6 (2012), 89-106. DOI10.1007/s11571-011-9184-7
  23. Kennedy, M. P., 10.1109/81.331536, IEEE Trans. Circ. Syst. I 41 (1994), 711-774. DOI10.1109/81.331536
  24. Kobe, D. H., 10.1119/1.14562, Amer. J. Physics 54 (1986), 552-554. DOI10.1119/1.14562
  25. Kwok, H. S., Tang, W. K. S., 10.1016/j.chaos.2005.11.090, Chaos Solitons Fractals 32 (2007), 1518-1529. MR2286314DOI10.1016/j.chaos.2005.11.090
  26. Leonov, G. A., Kuznetsov, N. V., Vagaitsev, V. I., 10.1016/j.physd.2012.05.016, Physica D 241 (2012), 1482-1486. MR2957820DOI10.1016/j.physd.2012.05.016
  27. Leonov, G. A., Kuznetsov, N. V., Vagaitsev, V. I., 10.1016/j.physleta.2011.04.037, Phys. Lett. A 375 (2011), 2230-2233. Zbl1242.34102MR2800438DOI10.1016/j.physleta.2011.04.037
  28. Leonov, G. A., Kuznetsov, N. V., Vagaitsev, V. I., 10.1016/j.physd.2012.05.016, Physica D 241 (2012), 1482-1486. MR2957820DOI10.1016/j.physd.2012.05.016
  29. Leonov, G. A., Kuznetsov, N. V., Mokaev, T. N., 10.1016/j.cnsns.2015.04.007, Commun. Nonlinear Sci. Numer. Simulat. 28 (2015), 166-176. MR3348101DOI10.1016/j.cnsns.2015.04.007
  30. Li, C., Li, S., al., M. Asim et, 10.1016/j.imavis.2008.12.008, Image Vision Computing 27 (2009), 1371-1381. DOI10.1016/j.imavis.2008.12.008
  31. Li, Y. Y., G., H., Gu, 10.1007/s11071-016-3210-6, Nonlinear Dyn. 87 (2017), 2541-2562. DOI10.1007/s11071-016-3210-6
  32. Li, X., Li, C., Lee, I. K., 10.1016/j.sigpro.2015.11.017 DOI10.1016/j.sigpro.2015.11.017
  33. Li, F., Yao, C. G., 10.1007/s11071-016-2646-z, Nonlinear Dyn. 84 (2016), 2305-2315. MR3504299DOI10.1007/s11071-016-2646-z
  34. Li, T. Y., Yorke, J. Y., 10.2307/2318254, Amer. Math. Monthly 82 (1975), 985-992. MR0385028DOI10.2307/2318254
  35. Lorenz, E. N., 10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2, J. Atmospher. Sci. 20 (1963), 130-141. DOI10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
  36. Lv, M., Ma, J., 10.1016/j.neucom.2016.05.004, Neurocomputing 205 (2016), 375-381. DOI10.1016/j.neucom.2016.05.004
  37. Lv, M., Wang, C., al., G. Ren et, 10.1007/s11071-016-2773-6, Nonlinear Dyn. 85 (2016), 1479-1490. DOI10.1007/s11071-016-2773-6
  38. Ma, J., Wu, X. Y., al., R. T. Chu et, 10.1007/s11071-014-1260-1, Nonlinear Dyn. 76 (2014), 1951-1962. DOI10.1007/s11071-014-1260-1
  39. Ma, J., Li, A. B., al., Z. S. Pu et, 10.1007/s11071-010-9739-x, Nonlinear Dyn. 62 (2010), 535-541. DOI10.1007/s11071-010-9739-x
  40. Ma, J., Mi, L., al., P. Zhou et, 10.1016/j.amc.2017.03.002, Appl. Math. Comput. 307 (2017), 321-328. MR3632742DOI10.1016/j.amc.2017.03.002
  41. Ma, J., Song, X. L., al., J. Tang et, 10.1016/j.neucom.2015.04.056, Neurocomputing 167 (2015), 378-389. DOI10.1016/j.neucom.2015.04.056
  42. Ma, J., Wu, F., al., W. Jin et, 10.1063/1.4983469, Chaos 27 (2017), 481-495. MR3650956DOI10.1063/1.4983469
  43. Ma, J., Wu, F. Q., al., G. D. Ren et, 10.1016/j.amc.2016.11.004, Appl. Math. Comput. 298 (2017), 65-76. MR3582328DOI10.1016/j.amc.2016.11.004
  44. Ma, J., Wu, F., Wang, C., 10.1142/s0217979216502519, Int. J. Mod Phys. B 31 (2017), 1650251. MR3599028DOI10.1142/s0217979216502519
  45. Ma, J., Zhang, A. H., al., Y. F. Xia et, 10.1016/j.amc.2009.10.020, Appl. Math. Comput. 215 (2010), 3318-3326. MR2576820DOI10.1016/j.amc.2009.10.020
  46. May, R. M., 10.1038/261459a0, Nature 261 (1976), 459-467. Zbl0527.58025DOI10.1038/261459a0
  47. Molaie, M., Jafari, S., al., J. C. Sprott et, 10.1142/s0218127413501885, Int. J. Bifurcat. Chaos (2013), 1350188. MR3150373DOI10.1142/s0218127413501885
  48. Muthuswamy, B., 10.1142/s0218127410026514, Int. J. Bifurcat. Chaos 20 (2010), 1335-1350. DOI10.1142/s0218127410026514
  49. Pham, V- T., Jafari, S., al., X. Wang X et, 10.1142/s0218127416500693, Int. J. Bifurcat. Chaos 26 (2016), 1650069. MR3494063DOI10.1142/s0218127416500693
  50. Pham, V. T., Volos, C., Jafari, S., 10.1142/s021812741650139x, Int. J. Bifurcat. Chaos 26 (2016), 1650139. MR3533675DOI10.1142/s021812741650139x
  51. Piper, J. R., Sprott, J. C., 10.1109/tcsii.2010.2058493, IEEE Trans. Circ. Syst. II 57 (2010), 730-734. DOI10.1109/tcsii.2010.2058493
  52. Qi, G. Y., Chen, G. R., 10.1007/s11071-015-2075-4, Nonlinear Dyn. 81 (2015), 1381-1392. MR3367161DOI10.1007/s11071-015-2075-4
  53. Ren, G. D., Xu, Y., Wang, C. N., 10.1007/s11071-015-2075-4, Nonlinear Dyn. 88 (2017), 893-901. DOI10.1007/s11071-015-2075-4
  54. Ryeu, J. K., Aihara, K., Tsuda, I., 10.1103/physreve.64.046202, Phys. Rev. E 64 (2001), 046202. DOI10.1103/physreve.64.046202
  55. Shaw, R., The dripping faucet as a model chaotic system., Aerial Press, Santa Cruz 1984. MR1101814
  56. Song, X. L., Jin, W. Y., Ma, J., 10.1088/1674-1056/24/12/128710, Chinese Phys. B 24 (2015), 604-609. DOI10.1088/1674-1056/24/12/128710
  57. Strukov, D. B., Snider, G. S., al., D. R. Stewart et, 10.1038/nature06932, Nature 453( 2008), 80-83. DOI10.1038/nature06932
  58. Wang, Z. H., Cang, S. J., al., E. O. Ochola et, 10.1007/s11071-011-0284-z, Nonlinear Dyn. 69 (2012), 531-537. MR2929891DOI10.1007/s11071-011-0284-z
  59. Wang, X., Chen, G. R., 10.1007/s11071-012-0669-7, Nonlinear Dyn. 71 (2013), 429-436. MR3015249DOI10.1007/s11071-012-0669-7
  60. Wang, C., Chu, R., Ma, J., 10.1002/cplx.21572, Complexity 21 (2015), 370-378. MR3407876DOI10.1002/cplx.21572
  61. Wang, S., Kuang, J., al., J. Li et, 10.1103/physreve.66.065202, Phys. Rev. E 66 (2002), 065202. DOI10.1103/physreve.66.065202
  62. Wang, C. N., Ma, J., al., Y. Liu et, 10.1007/s11071-011-9965-x, Nonlinear Dyn. 67 (2012), 139-146. DOI10.1007/s11071-011-9965-x
  63. Wang, C. N., Wang, Y., Ma, J., Calculation of Hamilton energy function of dynamical system by using Helmholtz theorem., Acta Physica Sinica 65 (2016), 240501. 
  64. Wolf, A., Swift, J. B., al., H. L. Swinney et, 10.1016/0167-2789(85)90011-9, Physica D 16 (1985), 285-317. MR0805706DOI10.1016/0167-2789(85)90011-9
  65. Wu, C. W., Chua, L. O., 10.1142/s0218127493001288, Int. J. Bifurcat. Chaos 3 (1993), 1619-1627. DOI10.1142/s0218127493001288
  66. Wu, X. Y., Ma, J., al., L. H. Yuan et, 10.1007/s11071-013-1053-y, Nonlinear Dyn. 75 (2014), 113-126. MR3144840DOI10.1007/s11071-013-1053-y
  67. Yalcin, M. E, 10.1016/j.chaos.2006.04.058, Chaos Solutons Fractals 34 (2007), 1659-1666. DOI10.1016/j.chaos.2006.04.058
  68. Yang, T., A survey of chaotic secure communication systems., Int. J. Comput. Cogn. 2 (2004), 81-130. 
  69. Zarei, A., 10.1007/s11071-015-2013-5, Nonlinear Dyn. 81 (2015), 585-605. MR3355053DOI10.1007/s11071-015-2013-5
  70. Zarei, A., Tavakoli, S., 10.1016/j.amc.2016.07.023, Appl. Math. Comput. 291 (2016), 323-339. MR3534407DOI10.1016/j.amc.2016.07.023

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.