A generalization to the Hardy-Sobolev spaces H k , p of an L p - L 1 logarithmic type estimate

Imed Feki; Ameni Massoudi; Houda Nfata

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 2, page 387-414
  • ISSN: 0011-4642

Abstract

top
The main purpose of this article is to give a generalization of the logarithmic-type estimate in the Hardy-Sobolev spaces H k , p ( G ) ; k * , 1 p and G is the open unit disk or the annulus of the complex space .

How to cite

top

Feki, Imed, Massoudi, Ameni, and Nfata, Houda. "A generalization to the Hardy-Sobolev spaces $H^{k,p}$ of an $L^p$-$L^1$ logarithmic type estimate." Czechoslovak Mathematical Journal 68.2 (2018): 387-414. <http://eudml.org/doc/294324>.

@article{Feki2018,
abstract = {The main purpose of this article is to give a generalization of the logarithmic-type estimate in the Hardy-Sobolev spaces $H^\{k,p\}(G)$; $k \in \{\mathbb \{N\}\}^*$, $1 \le p \le \infty $ and $G$ is the open unit disk or the annulus of the complex space $\mathbb \{C\}$.},
author = {Feki, Imed, Massoudi, Ameni, Nfata, Houda},
journal = {Czechoslovak Mathematical Journal},
keywords = {annular domain; Poisson kernel; Hardy-Sobolev space; logarithmic estimate},
language = {eng},
number = {2},
pages = {387-414},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A generalization to the Hardy-Sobolev spaces $H^\{k,p\}$ of an $L^p$-$L^1$ logarithmic type estimate},
url = {http://eudml.org/doc/294324},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Feki, Imed
AU - Massoudi, Ameni
AU - Nfata, Houda
TI - A generalization to the Hardy-Sobolev spaces $H^{k,p}$ of an $L^p$-$L^1$ logarithmic type estimate
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 2
SP - 387
EP - 414
AB - The main purpose of this article is to give a generalization of the logarithmic-type estimate in the Hardy-Sobolev spaces $H^{k,p}(G)$; $k \in {\mathbb {N}}^*$, $1 \le p \le \infty $ and $G$ is the open unit disk or the annulus of the complex space $\mathbb {C}$.
LA - eng
KW - annular domain; Poisson kernel; Hardy-Sobolev space; logarithmic estimate
UR - http://eudml.org/doc/294324
ER -

References

top
  1. Alessandrini, G., Piero, L. Del, Rondi, L., 10.1088/0266-5611/19/4/312, Inverse Probl. 19 (2003), 973-984. (2003) Zbl1050.35134MR2005313DOI10.1088/0266-5611/19/4/312
  2. Balinskii, A. A., Novikov, S. P., Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras, Sov. Math., Dokl. 32 (1985), 228-231. English. Russian original translation from Dokl. Akad. Nauk SSSR 283 1985 1036-1039. (1985) Zbl0606.58018MR0802121
  3. Babenko, V. F., Kofanov, V. A., Pichugov, S. A., Inequalities of Kolmogrov type and some their applications in approximation theory, Proceedings of the 3rd International Conference on Functional Analysis and Approximation Theory, Palermo: Circolo Matemàtico di Palermo, Suppl. Rend. Circ. Mat. Palermo, II. Ser. 52 (1998), 223-237. (1998) Zbl0909.41008MR1644551
  4. Baratchart, L., Mandréa, F., Saff, E. B., Wielonsky, F., 10.1016/j.matpur.2005.12.001, J. Math. Pures Appl. (9) 86 (2006), 1-41. (2006) Zbl1106.35129MR2246355DOI10.1016/j.matpur.2005.12.001
  5. Baratchart, L., Zerner, M., 10.1016/0377-0427(93)90300-Z, J. Comput. Appl. Math. 46 (1993), 255-269. (1993) Zbl0818.65017MR1222486DOI10.1016/0377-0427(93)90300-Z
  6. Brézis, H., Analyse fonctionnelle. Théorie et applications, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris (1983), French. (1983) Zbl0511.46001MR0697382
  7. Chaabane, S., Feki, I., 10.1016/j.crma.2009.07.018, C. R., Math., Acad. Sci. Paris 347 (2009), 1001-1006. (2009) Zbl1181.46023MR2554565DOI10.1016/j.crma.2009.07.018
  8. Chaabane, S., Fellah, I., Jaoua, M., Leblond, J., 10.1088/0266-5611/20/1/003, Inverse Probl. 20 (2004), 47-59. (2004) Zbl1055.35135MR2044605DOI10.1088/0266-5611/20/1/003
  9. Chalendar, I., Partington, J. R., 10.4064/sm-136-3-255-269, Stud. Math. 136 (1999), 255-269. (1999) Zbl0952.30033MR1724247DOI10.4064/sm-136-3-255-269
  10. Chevreau, B., Pearcy, C. M., Shields, A. L., Finitely connected domains G , representations of H ( G ) , and invariant subspaces, J. Oper. Theory 6 (1981), 375-405. (1981) Zbl0525.47004MR0643698
  11. Duren, P. L., 10.1016/s0079-8169(08)x6157-4, Pure and Applied Mathematics 38, Academic Press, New York (1970). (1970) Zbl0215.20203MR0268655DOI10.1016/s0079-8169(08)x6157-4
  12. Feki, I., 10.1007/s10587-013-0032-2, Czech. Math. J. 63 (2013), 481-495. (2013) Zbl1289.30231MR3073973DOI10.1007/s10587-013-0032-2
  13. Feki, I., Nfata, H., 10.1016/j.jmaa.2014.05.042, J. Math. Anal. Appl. 419 (2014), 1248-1260. (2014) Zbl1293.30073MR3225432DOI10.1016/j.jmaa.2014.05.042
  14. Feki, I., Nfata, H., Wielonsky, F., 10.1016/j.jmaa.2012.05.055, J. Math. Anal. Appl. 395 (2012), 366-375. (2012) Zbl1250.30051MR2943628DOI10.1016/j.jmaa.2012.05.055
  15. Gaier, D., Pommerenke, C., 10.1307/mmj/1028999660, Mich. Math. J. 14 (1967), 79-82. (1967) Zbl0182.10204MR0204631DOI10.1307/mmj/1028999660
  16. Hardy, G. H., 10.1112/plms/s2_14.1.269, Lond. M. S. Proc. (2) 14 (1915), 269-277. (1915) Zbl45.1331.03DOI10.1112/plms/s2_14.1.269
  17. Hardy, G. H., Landau, E., Littlewood, J. E., 10.1007/BF01201386, Math. Z. 39 (1935), 677-695. (1935) Zbl0011.06102MR1545530DOI10.1007/BF01201386
  18. Klots, B. E., 10.1007/BF02317028, Math. Notes 21 (1977), 12-19. English. Russian original translation from Mat. Zametki 21 1977 21-32. (1977) Zbl0363.41015MR0481797DOI10.1007/BF02317028
  19. Leblond, J., Mahjoub, M., Partington, J. R., 10.1515/156939406777571049, J. Inverse Ill-Posed Probl. 14 (2006), 189-204. (2006) Zbl1111.35121MR2242304DOI10.1515/156939406777571049
  20. Meftahi, H., Wielonsky, F., 10.1016/j.jmaa.2009.04.040, J. Math. Anal. Appl. 358 (2009), 98-109. (2009) Zbl1176.46029MR2527584DOI10.1016/j.jmaa.2009.04.040
  21. Miller, P. D., 10.1090/gsm/075, Graduate Studies in Mathematics 75, American Mathematical Society, Providence (2006). (2006) Zbl1101.41031MR2238098DOI10.1090/gsm/075
  22. Nirenberg, L., An extended interpolation inequality, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 20 (1966), 733-737. (1966) Zbl0163.29905MR0208360
  23. Rudin, W., 10.2307/1992948, Trans. Am. Math. Soc. 78 (1955), 46-66. (1955) Zbl0064.31203MR0067993DOI10.2307/1992948
  24. Sarason, D., 10.1090/memo/0056, Mem. Amer. Math. Soc. 56 (1965), 78 pages. (1965) Zbl0127.07002MR0188824DOI10.1090/memo/0056
  25. Wang, H.-C., 10.1017/S0004972700011515, Bull. Aust. Math. Soc. 27 (1983), 91-105. (1983) Zbl0512.42023MR0696647DOI10.1017/S0004972700011515

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.