A generalized bivariate lifetime distribution based on parallel-series structures

Vahideh Mohtashami-Borzadaran; Mohammad Amini; Jafar Ahmadi

Kybernetika (2019)

  • Volume: 55, Issue: 3, page 435-454
  • ISSN: 0023-5954

Abstract

top
In this paper, a generalized bivariate lifetime distribution is introduced. This new model is constructed based on a dependent model consisting of two parallel-series systems which have a random number of parallel subsystems with fixed components connected in series. The probability that one system fails before the other one is measured by using competing risks. Using the extreme-value copulas, the dependence structure of the proposed model is studied. Kendall's tau, Spearman's rho and tail dependences are investigated for some special cases. Simulation results are given to examine the effectiveness of the proposed model.

How to cite

top

Mohtashami-Borzadaran, Vahideh, Amini, Mohammad, and Ahmadi, Jafar. "A generalized bivariate lifetime distribution based on parallel-series structures." Kybernetika 55.3 (2019): 435-454. <http://eudml.org/doc/294326>.

@article{Mohtashami2019,
abstract = {In this paper, a generalized bivariate lifetime distribution is introduced. This new model is constructed based on a dependent model consisting of two parallel-series systems which have a random number of parallel subsystems with fixed components connected in series. The probability that one system fails before the other one is measured by using competing risks. Using the extreme-value copulas, the dependence structure of the proposed model is studied. Kendall's tau, Spearman's rho and tail dependences are investigated for some special cases. Simulation results are given to examine the effectiveness of the proposed model.},
author = {Mohtashami-Borzadaran, Vahideh, Amini, Mohammad, Ahmadi, Jafar},
journal = {Kybernetika},
keywords = {copula; extreme-value copula; dependence measures; distortion; competing risks},
language = {eng},
number = {3},
pages = {435-454},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A generalized bivariate lifetime distribution based on parallel-series structures},
url = {http://eudml.org/doc/294326},
volume = {55},
year = {2019},
}

TY - JOUR
AU - Mohtashami-Borzadaran, Vahideh
AU - Amini, Mohammad
AU - Ahmadi, Jafar
TI - A generalized bivariate lifetime distribution based on parallel-series structures
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 3
SP - 435
EP - 454
AB - In this paper, a generalized bivariate lifetime distribution is introduced. This new model is constructed based on a dependent model consisting of two parallel-series systems which have a random number of parallel subsystems with fixed components connected in series. The probability that one system fails before the other one is measured by using competing risks. Using the extreme-value copulas, the dependence structure of the proposed model is studied. Kendall's tau, Spearman's rho and tail dependences are investigated for some special cases. Simulation results are given to examine the effectiveness of the proposed model.
LA - eng
KW - copula; extreme-value copula; dependence measures; distortion; competing risks
UR - http://eudml.org/doc/294326
ER -

References

top
  1. Asgharzadeh, A., Bakouch, H. S., Nadarajah, S., Esmaeili, L., 10.14736/kyb-2014-1-0142, Kybernetika 50 (2014), 142-169. MR3195009DOI10.14736/kyb-2014-1-0142
  2. Crane, G., Hoek, J., 10.1016/j.insmatheco.2007.10.007, Insurance Math. Econom. 42 (2008), 903-908. MR2435360DOI10.1016/j.insmatheco.2007.10.007
  3. Crowder, M. J., 10.1201/9781420035902, Chapman and Hall/CRC, New York 2001. DOI10.1201/9781420035902
  4. Dolati, A., Amini, M., Mirhosseini, S. M., 10.1007/s00184-013-0440-1, Metrika 77 (2014), 333-347. MR3175127DOI10.1007/s00184-013-0440-1
  5. Dolati, A., Ućbeda-Flores, M., Constructing copulas by means of pairs of order statistics., Kybernetika 45 (2009), 992-1002. MR2650078
  6. Durante, F., 10.1007/s00362-007-0064-5, Statist. Papers 50 (2009), 383-391. MR2476195DOI10.1007/s00362-007-0064-5
  7. Durante, F., Foschi, R., Sarkoci, P., 10.1080/03610920903039506, Commun. Statistics-Theory Methods 39 (2010), 2288-2301. Zbl1194.62075MR2755652DOI10.1080/03610920903039506
  8. Durrleman, V., Nickeghbali, A., Roncalli, T., A simple transformation of copulas., Available at: gro.creditlyonnais.fr/content/rd/home copulas.htm, (2000). 
  9. Genest, C., Rivest, L., 10.1016/s0167-7152(01)00047-5, Statist. Probab. Lett. 53 (2001), 391-399. MR1856163DOI10.1016/s0167-7152(01)00047-5
  10. Goldoust, M., Rezaei, S., Si, Y., Nadarajah, S., 10.1080/03610926.2017.1346802, Commun. Statistics-Theory Methods 47 (2017), 3052-3072. MR3804208DOI10.1080/03610926.2017.1346802
  11. Goudendorf, G., Segers, J., 10.1007/978-3-642-12465-5_6, In: Copula Theory and Its Applications, Lecture Notes in Statistics (P. Jaworski, F. Durante, W. Härdle, T. Rychlik, eds.), Springer, Berlin, Heidelberg 2010, 198, pp. 127-145. MR3051266DOI10.1007/978-3-642-12465-5_6
  12. Joe, H., 10.1002/(sici)1097-0258(19980930)17:18<2154::aid-sim913>3.0.co;2-r, Chapman and Hall-London, Berlin 1997. Zbl0990.62517MR1462613DOI10.1002/(sici)1097-0258(19980930)17:18<2154::aid-sim913>3.0.co;2-r
  13. Kotz, S., Nadarajah, S., 10.1142/9781860944024, Imperial College Press-London, Berlin 2001. MR1892574DOI10.1142/9781860944024
  14. Kotz, S., Lumelskii, Y., Pensky, M., 10.1142/5015, World Scientific Publishing-Singapore, Berlin 2003. MR1980497DOI10.1142/5015
  15. Kundu, D., Gupta, A., 10.1016/j.jmva.2013.08.004, J. Multivariate Anal. 123 (2014), 19-29. MR3130418DOI10.1016/j.jmva.2013.08.004
  16. Li, C., Li, X., 10.1007/s00184-018-0651-6, Metrika 81 (2018), 4, 445-464. MR3795184DOI10.1007/s00184-018-0651-6
  17. Lu, Y., 10.1007/s00362-017-0956-y, Statist. Papers (2017). DOI10.1007/s00362-017-0956-y
  18. Marshall, A. W., Olkin, I., 10.1093/biomet/84.3.641, Biometrika 84 (1997), 641-652. Zbl0888.62012MR1603936DOI10.1093/biomet/84.3.641
  19. Mirhosseini, S. M., Dolati, A., Amini, M., On a class of distributions generated by stochastic mixture of the extreme order statistics of a sample of size two., J. Statist. Theory Appl. 10 (2011), 455-468. MR2868281
  20. Mirhosseini, S. M., Amini, M., Dolati, A., 10.1007/s10492-015-0086-6, Appl. Math. 60 (2015), 91-108. MR3299874DOI10.1007/s10492-015-0086-6
  21. Morillas, P., 10.1007/s001840400330, Metrika 61 (2005), 169-184. MR2159414DOI10.1007/s001840400330
  22. Nelsen, R. B., 10.1007/0-387-28678-0, Springer Science and Business Media, 2006. Zbl1152.62030MR2197664DOI10.1007/0-387-28678-0
  23. Pikhands, J., Multivariate extreme-value distributions (with a discussion)., In: Proc. 43rd session of the International Statistical Institute. Bull. Int. Inst. 49 (1981), pp. 859-878. MR0820979
  24. Popović, B. V., Genç, A. İ., 10.1007/s00009-018-1201-1, Mediter. J. Math. 15 (2018), 4, Article: 153. MR3814571DOI10.1007/s00009-018-1201-1
  25. Roozegar, R., Jafari, A. A., 10.1007/s40995-017-0297-7, Iran. J. Science Technol., Trans. A: Science 41 (2017), 693-706. MR3714812DOI10.1007/s40995-017-0297-7
  26. Roozegar, R., Nadarajah, S., 10.1016/j.cam.2017.05.020, J. Comput. Appl. Math. 326 (2017), 235-246. MR3668573DOI10.1016/j.cam.2017.05.020
  27. Shih, J. H., Emura, T., 10.1007/s00362-016-0865-5, Statist. Papers (2016). MR4008679DOI10.1007/s00362-016-0865-5
  28. Sklar, A., Function de repartition an dimensions et leurs marges., Publ. Inst. Statist. Univ. Paris 8 (1959), 229-331. MR0125600
  29. Zhang, K., Lin, J., Xu, P., 10.1016/j.insmatheco.2015.09.008, Insurance: Mathematics and Economics 66 (2016), 1-10. MR3435782DOI10.1016/j.insmatheco.2015.09.008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.