On a general structure of the bivariate FGM type distributions

Sayed Mohsen Mirhosseini; Mohammad Amini; Ali Dolati

Applications of Mathematics (2015)

  • Volume: 60, Issue: 1, page 91-108
  • ISSN: 0862-7940

Abstract

top
In this paper, we study a general structure for the so-called Farlie-Gumbel-Morgenstern (FGM) family of bivariate distributions. Through examples we show how to use the proposed structure to study dependence properties of the FGM type distributions by a general approach.

How to cite

top

Mirhosseini, Sayed Mohsen, Amini, Mohammad, and Dolati, Ali. "On a general structure of the bivariate FGM type distributions." Applications of Mathematics 60.1 (2015): 91-108. <http://eudml.org/doc/262144>.

@article{Mirhosseini2015,
abstract = {In this paper, we study a general structure for the so-called Farlie-Gumbel-Morgenstern (FGM) family of bivariate distributions. Through examples we show how to use the proposed structure to study dependence properties of the FGM type distributions by a general approach.},
author = {Mirhosseini, Sayed Mohsen, Amini, Mohammad, Dolati, Ali},
journal = {Applications of Mathematics},
keywords = {copula; dependence; FGM family; measure of association; copula; FGM family; dependence measure},
language = {eng},
number = {1},
pages = {91-108},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a general structure of the bivariate FGM type distributions},
url = {http://eudml.org/doc/262144},
volume = {60},
year = {2015},
}

TY - JOUR
AU - Mirhosseini, Sayed Mohsen
AU - Amini, Mohammad
AU - Dolati, Ali
TI - On a general structure of the bivariate FGM type distributions
JO - Applications of Mathematics
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 1
SP - 91
EP - 108
AB - In this paper, we study a general structure for the so-called Farlie-Gumbel-Morgenstern (FGM) family of bivariate distributions. Through examples we show how to use the proposed structure to study dependence properties of the FGM type distributions by a general approach.
LA - eng
KW - copula; dependence; FGM family; measure of association; copula; FGM family; dependence measure
UR - http://eudml.org/doc/262144
ER -

References

top
  1. Amblard, C., Girard, S., 10.1080/10485250215322, J. Nonparametric Stat. 14 (2002), 715-727. (2002) Zbl1019.62046MR1941711DOI10.1080/10485250215322
  2. Amblard, C., Girard, S., 10.1007/s00184-008-0174-7, Metrika 70 (2009), 1-17. (2009) MR2506497DOI10.1007/s00184-008-0174-7
  3. Bairamov, I., Kotz, S., 10.1007/s001840100158, Metrika 56 (2002), 55-72. (2002) MR1922211DOI10.1007/s001840100158
  4. Bairamov, I., Kotz, S., Bekçi, M., 10.1080/02664760120047861, J. Appl. Stat. 28 (2001), 521-536. (2001) Zbl0991.62032MR1836732DOI10.1080/02664760120047861
  5. Bairamov, I., Kotz, S., Gebizlioglu, O. L., The Sarmanov family and its generalization, S. Afr. Stat. J. 35 (2001), 205-224. (2001) Zbl1009.62011MR1910896
  6. Baker, R., 10.1016/j.jmva.2008.02.019, J. Multivariate Anal. 99 (2008), 2312-2327. (2008) Zbl1151.62045MR2463391DOI10.1016/j.jmva.2008.02.019
  7. Church, J. D., Harris, B., 10.1080/00401706.1970.10488633, Technometrics 12 (1970), 49-54. (1970) Zbl0195.20001DOI10.1080/00401706.1970.10488633
  8. David, H. A., Nagaraja, H. N., Order Statistics, Wiley Series in Probability and Statistics John Wiley & Sons, Chichester (2003). (2003) Zbl1053.62060MR1994955
  9. Drouet-Mari, D., Kotz, S., Correlation and Dependence, Imperial College Press London (2001). (2001) Zbl0977.62004MR1835042
  10. Farlie, D. J. G., 10.1093/biomet/47.3-4.307, Biometrika 47 (1960), 307-323. (1960) Zbl0102.14903MR0119312DOI10.1093/biomet/47.3-4.307
  11. Fisher, M., Klein, I., 10.1007/s00184-006-0075-6, Metrika 65 (2007), 243-260. (2007) MR2288062DOI10.1007/s00184-006-0075-6
  12. Gumbel, E. J., 10.1080/01621459.1960.10483368, J. Am. Stat. Assoc. 55 (1960), 698-707. (1960) Zbl0099.14501MR0116403DOI10.1080/01621459.1960.10483368
  13. Han, K. H., A new family of negative quadrant dependent bivariate distributions with continuous marginals, Journal of the Chungcheong Mathematical Society 24 (2011), 795-805. (2011) 
  14. Hlubinka, D., Kotz, S., 10.1007/s10492-010-0020-x, Appl. Math., Praha 55 (2010), 495-512. (2010) Zbl1223.62080MR2737716DOI10.1007/s10492-010-0020-x
  15. Huang, J. S., Kotz, S., 10.1007/s001840050030, Metrika 49 (1999), 135-145. (1999) Zbl1093.62514MR1729905DOI10.1007/s001840050030
  16. Lai, C. D., Xie, M., 10.1016/S0167-7152(99)00122-4, Stat. Probab. Lett. 46 (2000), 359-364. (2000) Zbl0943.62043MR1743993DOI10.1016/S0167-7152(99)00122-4
  17. Mirhoseini, S. M., Dolati, A., Amini, M., On a class of distributions generated by stochastic mixture of the extreme order statistics of a sample of size two, J. Stat. Theory Appl. 10 (2011), 455-468. (2011) MR2868281
  18. Morgenstern, D., Einfache Beispiele zweidimensionaler Verteilungen, German Mitt.-Bl. Math. Statistik 8 (1956), 234-235. (1956) Zbl0070.36202MR0081575
  19. Nelsen, R. B., An Introduction to Copulas, Springer Series in Statistics Springer, New York (2006). (2006) Zbl1152.62030MR2197664
  20. Rodríguez-Lallena, J. A., Úbeda-Flores, M., 10.1016/j.spl.2003.09.010, Stat. Probab. Lett. 66 (2004), 315-325. (2004) Zbl1102.62054MR2045476DOI10.1016/j.spl.2003.09.010
  21. Sklar, M., Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Stat. Univ. Paris French 8 (1960), 229-231. (1960) MR0125600

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.