Goal-oriented error estimates including algebraic errors in discontinuous Galerkin discretizations of linear boundary value problems

Vít Dolejší; Filip Roskovec

Applications of Mathematics (2017)

  • Volume: 62, Issue: 6, page 579-605
  • ISSN: 0862-7940

Abstract

top
We deal with a posteriori error control of discontinuous Galerkin approximations for linear boundary value problems. The computational error is estimated in the framework of the Dual Weighted Residual method (DWR) for goal-oriented error estimation which requires to solve an additional (adjoint) problem. We focus on the control of the algebraic errors arising from iterative solutions of algebraic systems corresponding to both the primal and adjoint problems. Moreover, we present two different reconstruction techniques allowing an efficient evaluation of the error estimators. Finally, we propose a complex algorithm which controls discretization and algebraic errors and drives the adaptation of the mesh in the close to optimal manner with respect to the given quantity of interest.

How to cite

top

Dolejší, Vít, and Roskovec, Filip. "Goal-oriented error estimates including algebraic errors in discontinuous Galerkin discretizations of linear boundary value problems." Applications of Mathematics 62.6 (2017): 579-605. <http://eudml.org/doc/294330>.

@article{Dolejší2017,
abstract = {We deal with a posteriori error control of discontinuous Galerkin approximations for linear boundary value problems. The computational error is estimated in the framework of the Dual Weighted Residual method (DWR) for goal-oriented error estimation which requires to solve an additional (adjoint) problem. We focus on the control of the algebraic errors arising from iterative solutions of algebraic systems corresponding to both the primal and adjoint problems. Moreover, we present two different reconstruction techniques allowing an efficient evaluation of the error estimators. Finally, we propose a complex algorithm which controls discretization and algebraic errors and drives the adaptation of the mesh in the close to optimal manner with respect to the given quantity of interest.},
author = {Dolejší, Vít, Roskovec, Filip},
journal = {Applications of Mathematics},
keywords = {quantity of interest; discontinuous Galerkin; a posteriori error estimate; algebraic error},
language = {eng},
number = {6},
pages = {579-605},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Goal-oriented error estimates including algebraic errors in discontinuous Galerkin discretizations of linear boundary value problems},
url = {http://eudml.org/doc/294330},
volume = {62},
year = {2017},
}

TY - JOUR
AU - Dolejší, Vít
AU - Roskovec, Filip
TI - Goal-oriented error estimates including algebraic errors in discontinuous Galerkin discretizations of linear boundary value problems
JO - Applications of Mathematics
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 6
SP - 579
EP - 605
AB - We deal with a posteriori error control of discontinuous Galerkin approximations for linear boundary value problems. The computational error is estimated in the framework of the Dual Weighted Residual method (DWR) for goal-oriented error estimation which requires to solve an additional (adjoint) problem. We focus on the control of the algebraic errors arising from iterative solutions of algebraic systems corresponding to both the primal and adjoint problems. Moreover, we present two different reconstruction techniques allowing an efficient evaluation of the error estimators. Finally, we propose a complex algorithm which controls discretization and algebraic errors and drives the adaptation of the mesh in the close to optimal manner with respect to the given quantity of interest.
LA - eng
KW - quantity of interest; discontinuous Galerkin; a posteriori error estimate; algebraic error
UR - http://eudml.org/doc/294330
ER -

References

top
  1. Ainsworth, M., Rankin, R., 10.1002/nme.3276, Int. J. Numer. Methods Eng. 89 (2012), 1605-1634. (2012) Zbl1242.65232MR2899560DOI10.1002/nme.3276
  2. Arioli, M., Liesen, J., Międlar, A., Strakoš, Z., 10.1002/gamm.201310006, GAMM-Mitt. 36 (2013), 102-129. (2013) Zbl1279.65130MR3095916DOI10.1002/gamm.201310006
  3. Babuška, I., Rheinboldt, W. C., 10.1137/0715049, SIAM J. Numer. Anal. 15 (1978), 736-754. (1978) Zbl0398.65069MR0483395DOI10.1137/0715049
  4. Bangerth, W., Rannacher, R., 10.1007/978-3-0348-7605-6, Lectures in Mathematics, ETH Zürich, Birkhäuser, Basel (2003). (2003) Zbl1020.65058MR1960405DOI10.1007/978-3-0348-7605-6
  5. Bank, R. E., Weiser, A., 10.2307/2007953, Math. Comput. 44 (1985), 283-301. (1985) Zbl0569.65079MR0777265DOI10.2307/2007953
  6. Becker, R., Rannacher, R., 10.1017/S0962492901000010, Acta Numerica 10 (2001), 1-102. (2001) Zbl1105.65349MR2009692DOI10.1017/S0962492901000010
  7. Dolejší, V., ANGENER---software package, Charles University Prague, Faculty of Mathematics and Physics, www.karlin.mff.cuni.cz/ {dolejsi/angen/angen.htm} (2000). (2000) 
  8. Dolejší, V., 10.1016/j.matcom.2013.03.001, Math. Comput. Simul. 87 (2013), 87-118. (2013) MR3046879DOI10.1016/j.matcom.2013.03.001
  9. Dolejší, V., Feistauer, M., 10.1007/978-3-319-19267-3, Springer Series in Computational Mathematics 48, Springer, Cham (2015). (2015) Zbl06467550MR3363720DOI10.1007/978-3-319-19267-3
  10. Dolejší, V., May, G., Roskovec, F., Šolín, P., 10.1016/j.camwa.2016.12.015, Comput. Math. Appl. 74 (2017), 45-63. (2017) Zbl06786795MR3654083DOI10.1016/j.camwa.2016.12.015
  11. Dolejší, V., Roskovec, F., 10.21136/panm.2016.02, Programs and Algorithms of Numerical Mathematics 18, Proceedings of Seminar, Janov nad Nisou 2016 Institute of Mathematics CAS, Praha J. Chleboun et al. (2017), 15-23. (2017) MR3791862DOI10.21136/panm.2016.02
  12. Dolejší, V., Šolín, P., 10.1016/j.amc.2016.01.024, Appl. Math. Comput. 279 (2016), 219-235. (2016) MR3458017DOI10.1016/j.amc.2016.01.024
  13. Giles, M., Süli, E., 10.1017/S096249290200003X, Acta Numerica 11 (2002), 145-236. (2002) Zbl1105.65350MR2009374DOI10.1017/S096249290200003X
  14. Greenbaum, A., Pták, V., Strakoš, Z., 10.1137/S0895479894275030, SIAM J. Matrix Anal. Appl. 17 (1996), 465-469. (1996) Zbl0857.65029MR1397238DOI10.1137/S0895479894275030
  15. Harriman, K., Gavaghan, D., Süli, E., The importance of adjoint consistency in the approximation of linear functionals using the discontinuous Galerkin finite element method, Technical Report, Oxford University Computing Laboratory, Oxford (2004). (2004) 
  16. Harriman, K., Houston, P., Senior, B., Süli, E., 10.1090/conm/330/05886, Recent Advances in Scientific Computing and Partial Differential Equations, Hong Kong 2002 Contemp. Math. 330, American Mathematical Society, Providence S. Y. Cheng et al. (2003), 89-119. (2003) Zbl1037.65117MR2011714DOI10.1090/conm/330/05886
  17. Hartmann, R., 10.1137/060665117, SIAM J. Numer. Anal. 45 (2007), 2671-2696. (2007) Zbl1189.76341MR2361907DOI10.1137/060665117
  18. Hartmann, R., Houston, P., Symmetric interior penalty DG methods for the compressible Navier-Stokes equations. II. Goal-oriented a posteriori error estimation, Int. J. Numer. Anal. Model. 3 (2006), 141-162. (2006) Zbl1152.76429MR2237622
  19. Houston, P., Schwab, C., Süli, E., 10.1137/S0036142900374111, SIAM J. Numer. Anal. 39 (2002), 2133-2163. (2002) Zbl1015.65067MR1897953DOI10.1137/S0036142900374111
  20. Huynh, H. T., 10.2514/6.2007-4079, 18th AIAA Computational Fluid Dynamics Conference, Miami, Florida, 2007. DOI10.2514/6.2007-4079
  21. Meidner, D., Rannacher, R., Vihharev, J., 10.1515/JNUM.2009.009, J. Numer. Anal. 17 (2009), 143-172. (2009) Zbl1169.65340MR2543373DOI10.1515/JNUM.2009.009
  22. Nochetto, R. H., Veeser, A., Verani, M., 10.1093/imanum/drm026, IMA J. Numer. Anal. 29 (2009), 126-140. (2009) Zbl1168.65070MR2470943DOI10.1093/imanum/drm026
  23. Rannacher, R., Vihharev, J., 10.1515/jnum-2013-0002, J. Numer. Math. 21 (2013), 23-62. (2013) Zbl1267.65184MR3043432DOI10.1515/jnum-2013-0002
  24. Richter, T., Wick, T., 10.1016/j.cam.2014.11.008, J. Comput. Appl. Math. 279 (2015), 192-208. (2015) Zbl1306.65283MR3293320DOI10.1016/j.cam.2014.11.008
  25. Šolín, P., Demkowicz, L., 10.1016/j.cma.2003.09.015, Comput. Methods Appl. Mech. Eng. 193 (2004), 449-468. (2004) Zbl1044.65082MR2033961DOI10.1016/j.cma.2003.09.015
  26. Süli, E., Houston, P., Schwab, C., 10.1007/978-3-642-59721-3_16, B. Cockburn et al. Discontinuous Galerkin Methods. Theory, Computation and Applications, Newport 1999 Lect. Notes Comput. Sci. Eng. 11, Springer, Berlin (2000), 221-230. (2000) Zbl0946.65102MR1842176DOI10.1007/978-3-642-59721-3_16

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.