Itô-Henstock integral and Itô's formula for the operator-valued stochastic process

Mhelmar A. Labendia; Timothy Robin Y. Teng; Elvira P. de Lara-Tuprio

Mathematica Bohemica (2018)

  • Volume: 143, Issue: 2, page 135-160
  • ISSN: 0862-7959

Abstract

top
In this paper, we introduce the Itô-Henstock integral of an operator-valued stochastic process and formulate a version of Itô's formula.

How to cite

top

Labendia, Mhelmar A., Teng, Timothy Robin Y., and de Lara-Tuprio, Elvira P.. "Itô-Henstock integral and Itô's formula for the operator-valued stochastic process." Mathematica Bohemica 143.2 (2018): 135-160. <http://eudml.org/doc/294338>.

@article{Labendia2018,
abstract = {In this paper, we introduce the Itô-Henstock integral of an operator-valued stochastic process and formulate a version of Itô's formula.},
author = {Labendia, Mhelmar A., Teng, Timothy Robin Y., de Lara-Tuprio, Elvira P.},
journal = {Mathematica Bohemica},
keywords = {Itô-Henstock integrable function; Itô’s formula; $Q$-Wiener process},
language = {eng},
number = {2},
pages = {135-160},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Itô-Henstock integral and Itô's formula for the operator-valued stochastic process},
url = {http://eudml.org/doc/294338},
volume = {143},
year = {2018},
}

TY - JOUR
AU - Labendia, Mhelmar A.
AU - Teng, Timothy Robin Y.
AU - de Lara-Tuprio, Elvira P.
TI - Itô-Henstock integral and Itô's formula for the operator-valued stochastic process
JO - Mathematica Bohemica
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 143
IS - 2
SP - 135
EP - 160
AB - In this paper, we introduce the Itô-Henstock integral of an operator-valued stochastic process and formulate a version of Itô's formula.
LA - eng
KW - Itô-Henstock integrable function; Itô’s formula; $Q$-Wiener process
UR - http://eudml.org/doc/294338
ER -

References

top
  1. Aubin, J.-P., 10.1002/9781118032725, Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts, New York (2000). (2000) Zbl0946.46001MR1782330DOI10.1002/9781118032725
  2. Chew, T.-S., Tay, J.-Y., Toh, T.-L., The non-uniform Riemann approach to Itô's integral, Real Anal. Exch. 27 (2001-2002), 495-514. (2001) Zbl1067.60025MR1922665
  3. Prato, G. Da, 10.1007/978-88-7642-499-1, Appunti. Scuola Normale Superiore di Pisa (Nuova Series) 13. Edizioni della Normale, Pisa (2014). (2014) Zbl06276062MR3186829DOI10.1007/978-88-7642-499-1
  4. Prato, G. Da, Zabczyk, J., 10.1017/CBO9781107295513, Encyclopedia of Mathematics and Its Applications 152. Cambridge University Press, Cambridge (2014). (2014) Zbl1317.60077MR3236753DOI10.1017/CBO9781107295513
  5. Dieudonné, J., 10.1007/978-3-322-90009-8, Logik und Grundlagen der Mathematik, Bd. 25. Friedr. Vieweg & Sohn, Braunschweig (1987). (1987) Zbl0646.58001MR0936838DOI10.1007/978-3-322-90009-8
  6. Gawarecki, L., Mandrekar, V., 10.1007/978-3-642-16194-0, Probability and Its Applications. Springer, Heidelberg (2011). (2011) Zbl1228.60002MR2560625DOI10.1007/978-3-642-16194-0
  7. Ghahramani, S., Fundamentals of Probability with Stochastic Processes, Chapman and Hall/CRC Press, Boca Raton (2016). (2016) Zbl1336.60001MR3887668
  8. Gordon, R. A., 10.1090/gsm/004, Graduate Studies in Mathematics 4. AMS, Providence (1994). (1994) Zbl0807.26004MR1288751DOI10.1090/gsm/004
  9. Graves, L. M., 10.2307/1989284, Transactions AMS 29 (1927), 163-177. (1927) Zbl53.0234.03MR1501382DOI10.2307/1989284
  10. Henstock, R., 10.1142/0510, Series in Real Analysis 1. World Scientific Publishing, Singapore (1988). (1988) Zbl0668.28001MR0963249DOI10.1142/0510
  11. Kurzweil, J., 10.1142/4333, Series in Real Analysis 7. World Scientific Publishing, River Edge (2000). (2000) Zbl0954.28001MR1763305DOI10.1142/4333
  12. Lee, P. Y., 10.1142/0845, Series in Real Analysis 2. World Scientific Publishing, London (1989). (1989) Zbl0699.26004MR1050957DOI10.1142/0845
  13. Lee, P. Y., Výborný, R., The Integral: An Easy Approach after Kurzweil and Henstock, Australian Mathematical Society Lecture Series 14. Cambridge University Press, Cambridge (2000). (2000) Zbl0941.26003MR1756319
  14. Lee, T. Y., 10.1142/7933, Series in Real Analysis 12. World Scientific Publishing, Hackensack (2011). (2011) Zbl1246.26002MR2789724DOI10.1142/7933
  15. McShane, E. J., 10.1137/0117029, SIAM J. Appl. Math. 17 (1969), 287-306. (1969) Zbl0182.51001MR0246387DOI10.1137/0117029
  16. Mikosch, T., 10.1142/3856, Advanced Series on Statistical Science & Applied Probability 6. World Scientific Publishing, Singapore (1998). (1998) Zbl0934.60002MR1728093DOI10.1142/3856
  17. Nashed, M. Z., Differentiability and related properties of nonlinear operators: Some aspects of the role of differentials in nonlinear functional analysis, Nonlinear Functional Analysis Appl., Proc. Adv. Sem. Math. Res. Center, Univ. Wisconsin 1970 Publ. 26 Math. Res. Center Univ. Wisconsin (1971), 103-309. (1971) Zbl0224.00015MR0276840
  18. Pop-Stojanovic, Z. R., 10.1137/0122010, SIAM J. Appl. Math. 22 (1972), 87-92. (1972) Zbl0243.60035MR0322954DOI10.1137/0122010
  19. Prévôt, C., Röckner, M., 10.1007/978-3-540-70781-3, Lecture Notes in Mathematics 1905. Springer, Berlin (2007). (2007) Zbl1123.60001MR2329435DOI10.1007/978-3-540-70781-3
  20. Reed, M., Simon, B., Methods of Modern Mathematical Physics I. Functional Analysis, Academic Press, New York-London (1972). (1972) Zbl0242.46001MR0493419
  21. Riedle, M., 10.1007/978-3-642-15217-7_7, C. Donati-Martin et al. Séminaire de Probabilités XLIII Lecture Notes in Mathematics 2006. Springer, Berlin (2011), 191-214. (2011) Zbl1228.60049MR2790373DOI10.1007/978-3-642-15217-7_7
  22. Toh, T.-L., Chew, T.-S., 10.1016/S0022-247X(03)00059-3, J. Math. Anal. Appl. 280 (2003), 133-147. (2003) Zbl1022.60055MR1972197DOI10.1016/S0022-247X(03)00059-3
  23. Toh, T.-L., Chew, T.-S., 10.14321/realanalexch.30.1.0295, Real Anal. Exch. 30 (2005), 295-310. (2005) Zbl1068.60076MR2127534DOI10.14321/realanalexch.30.1.0295
  24. Toh, T.-L., Chew, T.-S., 10.14321/realanalexch.35.2.0375, Real Anal. Exch. 35 (2010), 375-390. (2010) Zbl1221.26015MR2683604DOI10.14321/realanalexch.35.2.0375
  25. Varadhan, S. R. S., 10.1090/cln/007, Courant Lecture Notes in Mathematics 7. American Mathematical Society, Providence; New York Univ., Courant Institute of Mathematical Sciences, New York (2001). (2001) Zbl0980.60002MR1852999DOI10.1090/cln/007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.