Displaying similar documents to “Itô-Henstock integral and Itô's formula for the operator-valued stochastic process”

The Kurzweil-Henstock theory of stochastic integration

Tin-Lam Toh, Tuan-Seng Chew (2012)

Czechoslovak Mathematical Journal

Similarity:

The Kurzweil-Henstock approach has been successful in giving an alternative definition to the classical Itô integral, and a simpler and more direct proof of the Itô Formula. The main advantage of this approach lies in its explicitness in defining the integral, thereby reducing the technicalities of the classical stochastic calculus. In this note, we give a unified theory of stochastic integration using the Kurzweil-Henstock approach, using the more general martingale as the integrator....

On belated differentiation and a characterization of Henstock-Kurzweil-Ito integrable processes

Tin-Lam Toh, Tuan-Seng Chew (2005)

Mathematica Bohemica

Similarity:

The Henstock-Kurzweil approach, also known as the generalized Riemann approach, has been successful in giving an alternative definition to the classical Itô integral. The Riemann approach is well-known for its directness in defining integrals. In this note we will prove the Fundamental Theorem for the Henstock-Kurzweil-Itô integral, thereby providing a characterization of Henstock-Kurzweil-Itô integrable stochastic processes in terms of their primitive processes.

Properties of generalized set-valued stochastic integrals

Michał Kisielewicz (2014)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

The paper is devoted to properties of generalized set-valued stochastic integrals defined in [10]. These integrals generalize set-valued stochastic integrals defined by E.J. Jung and J.H. Kim in the paper [4]. Up to now we were not able to construct any example of set-valued stochastic processes, different on a singleton, having integrably bounded set-valued integrals defined in [4]. It was shown by M. Michta (see [11]) that in the general case set-valued stochastic integrals defined...

Boundedness of set-valued stochastic integrals

Michał Kisielewicz (2015)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

The paper deals with integrably boundedness of Itô set-valued stochastic integrals defined by E.J. Jung and J.H. Kim in the paper [4], where has not been proved that this integral is integrably bounded. The problem of integrably boundedness of the above set-valued stochastic integrals has been considered in the paper [7] and the monograph [8], but the problem has not been solved there. The first positive results dealing with this problem due to M. Michta, who showed (see [11]) that there...

Stochastic differential inclusions

Michał Kisielewicz (1999)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

The definition and some existence theorems for stochastic differential inclusion dZₜ ∈ F(Zₜ)dXₜ, where F and X are set valued stochastic processes, are given.

Tightness of Continuous Stochastic Processes

Michał Kisielewicz (2006)

Discussiones Mathematicae Probability and Statistics

Similarity:

Some sufficient conditins for tightness of continuous stochastic processes is given. It is verified that in the classical tightness sufficient conditions for continuous stochastic processes it is possible to take a continuous nondecreasing stochastic process instead of a deterministic function one.