Separating equivalence classes
Commentationes Mathematicae Universitatis Carolinae (2018)
- Volume: 59, Issue: 4, page 531-540
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topZapletal, Jindřich. "Separating equivalence classes." Commentationes Mathematicae Universitatis Carolinae 59.4 (2018): 531-540. <http://eudml.org/doc/294341>.
@article{Zapletal2018,
abstract = {Given a countable Borel equivalence relation, I introduce an invariant measuring how difficult it is to find Borel sets separating its equivalence classes. I evaluate these invariants in several standard generic extensions.},
author = {Zapletal, Jindřich},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {countable Borel equivalence relation; forcing},
language = {eng},
number = {4},
pages = {531-540},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Separating equivalence classes},
url = {http://eudml.org/doc/294341},
volume = {59},
year = {2018},
}
TY - JOUR
AU - Zapletal, Jindřich
TI - Separating equivalence classes
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 4
SP - 531
EP - 540
AB - Given a countable Borel equivalence relation, I introduce an invariant measuring how difficult it is to find Borel sets separating its equivalence classes. I evaluate these invariants in several standard generic extensions.
LA - eng
KW - countable Borel equivalence relation; forcing
UR - http://eudml.org/doc/294341
ER -
References
top- Jech T., Set Theory, Springer Monographs in Mathematics, Springer, Berlin, 2003. Zbl1007.03002MR1940513
- Kanovei V., 10.1090/ulect/044/06, University Lecture Series, 44, American Mathematical Society, Providence, 2008. MR2441635DOI10.1090/ulect/044/06
- Zapletal J., Forcing Idealized, Cambridge Tracts in Mathematics, 174, Cambridge University Press, Cambridge, 2008. Zbl1140.03030MR2391923
- Zapletal J., Hypergraphs and proper forcing, available at arXiv:1710.10650 [math.LO] (2017), 64 pages.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.