Existence and uniqueness of solutions for gradient systems without a compactness embedding condition

Sahbi Boussandel

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 3, page 637-651
  • ISSN: 0011-4642

Abstract

top
This paper is devoted to the existence and uniqueness of solutions for gradient systems of evolution which involve gradients taken with respect to time-variable inner products. The Gelfand triple ( V , H , V ' ) considered in the setting of this paper is such that the embedding V H is only continuous.

How to cite

top

Boussandel, Sahbi. "Existence and uniqueness of solutions for gradient systems without a compactness embedding condition." Czechoslovak Mathematical Journal 69.3 (2019): 637-651. <http://eudml.org/doc/294349>.

@article{Boussandel2019,
abstract = {This paper is devoted to the existence and uniqueness of solutions for gradient systems of evolution which involve gradients taken with respect to time-variable inner products. The Gelfand triple $(V,H,V^\{\prime \})$ considered in the setting of this paper is such that the embedding $V\hookrightarrow H$ is only continuous.},
author = {Boussandel, Sahbi},
journal = {Czechoslovak Mathematical Journal},
keywords = {gradient system; existence and uniqueness of solution; Galerkin method; quadratic form; weakly lower semicontinuity; diffusion equation},
language = {eng},
number = {3},
pages = {637-651},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence and uniqueness of solutions for gradient systems without a compactness embedding condition},
url = {http://eudml.org/doc/294349},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Boussandel, Sahbi
TI - Existence and uniqueness of solutions for gradient systems without a compactness embedding condition
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 3
SP - 637
EP - 651
AB - This paper is devoted to the existence and uniqueness of solutions for gradient systems of evolution which involve gradients taken with respect to time-variable inner products. The Gelfand triple $(V,H,V^{\prime })$ considered in the setting of this paper is such that the embedding $V\hookrightarrow H$ is only continuous.
LA - eng
KW - gradient system; existence and uniqueness of solution; Galerkin method; quadratic form; weakly lower semicontinuity; diffusion equation
UR - http://eudml.org/doc/294349
ER -

References

top
  1. Ahmed, N. U., Xiang, X., 10.1016/0362-546x(94)90007-8, Nonlinear Anal., Theory Methods Appl. 22 (1994), 81-89. (1994) Zbl0806.34051MR1256172DOI10.1016/0362-546x(94)90007-8
  2. Amann, H., 10.1007/978-3-0348-9221-6, Monographs in Mathematics 89, Birkhäuser, Basel (1995). (1995) Zbl0819.35001MR1345385DOI10.1007/978-3-0348-9221-6
  3. Arendt, W., Chill, R., 10.2422/2036-2145.2010.3.04, Ann. Sc. Norm. Super. Pisa, Cl. Sci. 9 (2010), 523-539. (2010) Zbl1223.35202MR2722654DOI10.2422/2036-2145.2010.3.04
  4. W. Arendt, A. Grabosch, G. Greiner, U. Moustakas, R. Nagel, U. Schlotterbeck, U. Groh, H. P. Lotz, F. Neubrander, 10.1007/bfb0074922, Lecture Notes in Mathematics 1184, Springer, Berlin R. Nagel (1986). (1986) Zbl0585.47030MR0839450DOI10.1007/bfb0074922
  5. Attouch, H., Damlamian, A., 10.1016/0362-546x(78)90021-4, Nonlinear Anal., Theory, Methods Appl. 2 (1978), 329-353. (1978) Zbl0395.35045MR0512663DOI10.1016/0362-546x(78)90021-4
  6. Barbu, V., Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leyden (1976). (1976) Zbl0328.47035MR0390843
  7. Boussandel, S., 10.1016/j.jde.2010.09.009, J. Differ. Equations 250 (2011), 929-948. (2011) Zbl1209.47020MR2737819DOI10.1016/j.jde.2010.09.009
  8. Brézis, H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies 5, Notas de Matemática (50). North-Holland Publishing, Amsterdam; American Elsevier Publishing, New York (1973), French. (1973) Zbl0252.47055MR0348562
  9. Chill, R., Fašangová, E., Gradient Systems, Lecture Notes of the 13th International Internet Seminar, MatfyzPress, Praha (2010). (2010) 
  10. Fučík, S., Kufner, A., 10.1016/B978-0-444-41758-9.50004-8, Studies in Applied Mechanics 2, Elsevier, Amsterdam (1980). (1980) Zbl0426.35001MR0558764DOI10.1016/B978-0-444-41758-9.50004-8
  11. Hestenes, M. R., 10.2140/pjm.1951.1.525, Pac. J. Math. 1 (1951), 525-581. (1951) Zbl0045.20806MR0046590DOI10.2140/pjm.1951.1.525
  12. Hirano, N., 10.1016/0362-546x(89)90081-3, Nonlinear Anal., Theory Methods Appl. 13 (1989), 599-609. (1989) Zbl0682.34010MR0998507DOI10.1016/0362-546x(89)90081-3
  13. Ladyženskaja, O. A., Solonnikov, V. A., Ural'ceva, N. N., 10.1090/mmono/023, Translations of Mathematical Monographs 23, American Mathematical Society, Providence (1968). (1968) Zbl0174.15403MR0241822DOI10.1090/mmono/023
  14. Leoni, G., 10.1090/gsm/105, Graduate Studies in Mathematics 105, American Mathematical Society, Providence (2009). (2009) Zbl1180.46001MR2527916DOI10.1090/gsm/105
  15. Lieberman, G. M., 10.1142/3302, World Scientific, Singapore (1996). (1996) Zbl0884.35001MR1465184DOI10.1142/3302
  16. Lions, J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Etudes mathematiques, Dunod, Paris (1969), French. (1969) Zbl0189.40603MR0259693
  17. Littig, S., Voigt, J., 10.1007/s10587-015-0214-1, Czech. Math. J. 4 (2015), 869-889. (2015) Zbl1363.35083MR3441322DOI10.1007/s10587-015-0214-1
  18. Ôtani, M., On the existence of strong solutions for d u d t ( t ) + ψ 1 ( u ( t ) ) - ψ 2 ( u ( t ) ) f ( t ) , J. Fac. Sci., Univ. Tokyo, Sect. I A 24 (1977), 575-605. (1977) Zbl0386.47040MR0477358
  19. Ôtani, M., 10.1016/0022-0396(82)90119-x, J. Differ. Equations 46 (1982), 268-289. (1982) Zbl0495.35042MR0675911DOI10.1016/0022-0396(82)90119-x
  20. Pazy, A., 10.1007/978-1-4612-5561-1, Applied Mathematical Sciences 44, Springer, New York (1983). (1983) Zbl0516.47023MR0710486DOI10.1007/978-1-4612-5561-1
  21. Roubíček, T., 10.1007/978-3-0348-0513-1, ISNM. International Series of Numerical Mathematics 153, Birkhäuser, Basel (2013). (2013) Zbl1270.35005MR3014456DOI10.1007/978-3-0348-0513-1
  22. Showalter, R. E., 10.1090/surv/049, Mathematical Surveys and Monographs 49, American Mathematical Society, Providence (1997). (1997) Zbl0870.35004MR1422252DOI10.1090/surv/049
  23. Zeidler, E., 10.1007/978-1-4612-0981-2, Springer, New York (1990). (1990) Zbl0684.47029MR1033498DOI10.1007/978-1-4612-0981-2

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.