Equivalent conditions for the validity of the Helmholtz decomposition of Muckenhoupt -weighted -spaces
Czechoslovak Mathematical Journal (2018)
- Volume: 68, Issue: 3, page 771-789
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKakizawa, Ryôhei. "Equivalent conditions for the validity of the Helmholtz decomposition of Muckenhoupt $A_{p}$-weighted $L^{p}$-spaces." Czechoslovak Mathematical Journal 68.3 (2018): 771-789. <http://eudml.org/doc/294364>.
@article{Kakizawa2018,
abstract = {We discuss the validity of the Helmholtz decomposition of the Muckenhoupt $A_\{p\}$-weighted $L^\{p\}$-space $(L^\{p\}_\{w\}(\Omega ))^\{n\}$ for any domain $\Omega $ in $\mathbb \{R\}^\{n\}$, $n \in \mathbb \{Z\}$, $n\ge 2$, $1<p<\infty $ and Muckenhoupt $A_\{p\}$-weight $w \in A_\{p\}$. Set $p^\{\prime \}:=\{p\}/\{(p-1)\}$ and $w^\{\prime \}:=w^\{-\{1\}/\{(p-1)\}\}$. Then the Helmholtz decomposition of $(L^\{p\}_\{w\}(\Omega ))^\{n\}$ and $(L^\{p^\{\prime \}\}_\{w^\{\prime \}\}(\Omega ))^\{n\}$ and the variational estimate of $L^\{p\}_\{w,\pi \}(\Omega )$ and $L^\{p^\{\prime \}\}_\{w^\{\prime \},\pi \}(\Omega )$ are equivalent. Furthermore, we can replace $L^\{p\}_\{w,\pi \}(\Omega )$ and $L^\{p^\{\prime \}\}_\{w^\{\prime \},\pi \}(\Omega )$ by $L^\{p\}_\{w,\sigma \}(\Omega )$ and $L^\{p^\{\prime \}\}_\{w^\{\prime \},\sigma \}(\Omega )$, respectively. The proof is based on the reflexivity and orthogonality of $L^\{p\}_\{w,\pi \}(\Omega )$ and $L^\{p\}_\{w,\sigma \}(\Omega )$ and the Hahn-Banach theorem. As a corollary of our main result, we obtain the extrapolation theorem with the aid of the Helmholtz projection of $(L^\{p\}_\{w\}(\Omega ))^\{n\}$.},
author = {Kakizawa, Ryôhei},
journal = {Czechoslovak Mathematical Journal},
keywords = {Helmholtz decomposition; Muckenhoupt $A_\{p\}$-weighted $L^\{p\}$-spaces; variational estimate},
language = {eng},
number = {3},
pages = {771-789},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Equivalent conditions for the validity of the Helmholtz decomposition of Muckenhoupt $A_\{p\}$-weighted $L^\{p\}$-spaces},
url = {http://eudml.org/doc/294364},
volume = {68},
year = {2018},
}
TY - JOUR
AU - Kakizawa, Ryôhei
TI - Equivalent conditions for the validity of the Helmholtz decomposition of Muckenhoupt $A_{p}$-weighted $L^{p}$-spaces
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 3
SP - 771
EP - 789
AB - We discuss the validity of the Helmholtz decomposition of the Muckenhoupt $A_{p}$-weighted $L^{p}$-space $(L^{p}_{w}(\Omega ))^{n}$ for any domain $\Omega $ in $\mathbb {R}^{n}$, $n \in \mathbb {Z}$, $n\ge 2$, $1<p<\infty $ and Muckenhoupt $A_{p}$-weight $w \in A_{p}$. Set $p^{\prime }:={p}/{(p-1)}$ and $w^{\prime }:=w^{-{1}/{(p-1)}}$. Then the Helmholtz decomposition of $(L^{p}_{w}(\Omega ))^{n}$ and $(L^{p^{\prime }}_{w^{\prime }}(\Omega ))^{n}$ and the variational estimate of $L^{p}_{w,\pi }(\Omega )$ and $L^{p^{\prime }}_{w^{\prime },\pi }(\Omega )$ are equivalent. Furthermore, we can replace $L^{p}_{w,\pi }(\Omega )$ and $L^{p^{\prime }}_{w^{\prime },\pi }(\Omega )$ by $L^{p}_{w,\sigma }(\Omega )$ and $L^{p^{\prime }}_{w^{\prime },\sigma }(\Omega )$, respectively. The proof is based on the reflexivity and orthogonality of $L^{p}_{w,\pi }(\Omega )$ and $L^{p}_{w,\sigma }(\Omega )$ and the Hahn-Banach theorem. As a corollary of our main result, we obtain the extrapolation theorem with the aid of the Helmholtz projection of $(L^{p}_{w}(\Omega ))^{n}$.
LA - eng
KW - Helmholtz decomposition; Muckenhoupt $A_{p}$-weighted $L^{p}$-spaces; variational estimate
UR - http://eudml.org/doc/294364
ER -
References
top- Rham, G. de, Variétés différentiables. Formes, courants, formes harmoniques, Publications de l'Institut de Mathématique de l'Université de Nancago III. Actualités Scientifiques et Industrielles 1222 b, Hermann, Paris (1973), French. (1973) Zbl0284.58001MR0346830
- Fabes, E., Mendez, O., Mitrea, M., 10.1006/jfan.1998.3316, J. Funct. Anal. 159 (1998), 323-368. (1998) Zbl0930.35045MR1658089DOI10.1006/jfan.1998.3316
- Farwig, R., Weighted -Helmholtz decompositions in infinite cylinders and in infinite layers, Adv. Differ. Equ. 8 (2003), 357-384. (2003) Zbl1038.35068MR1948530
- Farwig, R., Kozono, H., Sohr, H., 10.1007/BF02588049, Acta Math. 195 (2005), 21-53. (2005) Zbl1111.35033MR2233684DOI10.1007/BF02588049
- Farwig, R., Kozono, H., Sohr, H., 10.1007/s00013-006-1910-8, Arch. Math. 88 (2007), 239-248. (2007) Zbl1121.35097MR2305602DOI10.1007/s00013-006-1910-8
- Farwig, R., Sohr, H., 10.2969/jmsj/04920251, J. Math. Soc. Japan 49 (1997), 251-288. (1997) Zbl0918.35106MR1601373DOI10.2969/jmsj/04920251
- Fröhlich, A., The Helmholtz decomposition of weighted -spaces for Muckenhoupt weights, Ann. Univ. Ferrara, Nuova Ser., Sez. VII 46 (2000), 11-19. (2000) Zbl1034.35089MR1896920
- Fröhlich, A., 10.1007/PL00012601, J. Evol. Equ. 2 (2002), 471-493. (2002) Zbl1040.35059MR1941038DOI10.1007/PL00012601
- Fröhlich, A., 10.1007/s00021-003-0080-8, J. Math. Fluid Mech. 5 (2003), 166-199. (2003) Zbl1040.35060MR1982327DOI10.1007/s00021-003-0080-8
- Fröhlich, A., 10.1007/s00208-007-0114-2, Math. Ann. 339 (2007), 287-316. (2007) Zbl1126.35041MR2324721DOI10.1007/s00208-007-0114-2
- García-Cuerva, J., Francia, J. L. Rubio de, 10.1016/s0304-0208(08)x7154-3, North-Holland Mathematics Studies 116, North-Holland, Amsterdam (1985). (1985) Zbl0578.46046MR0807149DOI10.1016/s0304-0208(08)x7154-3
- Geng, J., Shen, Z., 10.1016/j.jfa.2010.07.005, J. Funct. Anal. 259 (2010), 2147-2164. (2010) Zbl1195.35128MR2671125DOI10.1016/j.jfa.2010.07.005
- Kim, A. S., Shen, Z., 10.1016/j.jfa.2008.06.032, J. Funct. Anal. 255 (2008), 1817-1830. (2008) Zbl1180.35202MR2442084DOI10.1016/j.jfa.2008.06.032
- Kobayashi, T., Kubo, T., 10.21099/tkbjm/1389972027, Tsukuba J. Math. 37 (2013), 179-205. (2013) Zbl1282.35103MR3161575DOI10.21099/tkbjm/1389972027
- Lang, J., Méndez, O., 10.1007/s11118-006-9008-2, Potential Anal. 24 (2006), 385-406. (2006) Zbl1220.35120MR2224756DOI10.1007/s11118-006-9008-2
- Maekawa, Y., Miura, H., 10.1007/s00208-014-1033-7, Math. Ann. 359 (2014), 1077-1095. (2014) Zbl1295.35184MR3231025DOI10.1007/s00208-014-1033-7
- Simader, C. G., Sohr, H., Varnhorn, W., 10.1007/s11565-013-0193-9, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 60 (2014), 245-262. (2014) Zbl1304.35506MR3208796DOI10.1007/s11565-013-0193-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.