Equivalent conditions for the validity of the Helmholtz decomposition of Muckenhoupt -weighted -spaces

Ryôhei Kakizawa

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 3, page 771-789
  • ISSN: 0011-4642

Abstract

top
We discuss the validity of the Helmholtz decomposition of the Muckenhoupt -weighted -space for any domain in , , , and Muckenhoupt -weight . Set and . Then the Helmholtz decomposition of and and the variational estimate of and are equivalent. Furthermore, we can replace and by and , respectively. The proof is based on the reflexivity and orthogonality of and and the Hahn-Banach theorem. As a corollary of our main result, we obtain the extrapolation theorem with the aid of the Helmholtz projection of .

How to cite

top

Kakizawa, Ryôhei. "Equivalent conditions for the validity of the Helmholtz decomposition of Muckenhoupt $A_{p}$-weighted $L^{p}$-spaces." Czechoslovak Mathematical Journal 68.3 (2018): 771-789. <http://eudml.org/doc/294364>.

@article{Kakizawa2018,
abstract = {We discuss the validity of the Helmholtz decomposition of the Muckenhoupt $A_\{p\}$-weighted $L^\{p\}$-space $(L^\{p\}_\{w\}(\Omega ))^\{n\}$ for any domain $\Omega $ in $\mathbb \{R\}^\{n\}$, $n \in \mathbb \{Z\}$, $n\ge 2$, $1<p<\infty $ and Muckenhoupt $A_\{p\}$-weight $w \in A_\{p\}$. Set $p^\{\prime \}:=\{p\}/\{(p-1)\}$ and $w^\{\prime \}:=w^\{-\{1\}/\{(p-1)\}\}$. Then the Helmholtz decomposition of $(L^\{p\}_\{w\}(\Omega ))^\{n\}$ and $(L^\{p^\{\prime \}\}_\{w^\{\prime \}\}(\Omega ))^\{n\}$ and the variational estimate of $L^\{p\}_\{w,\pi \}(\Omega )$ and $L^\{p^\{\prime \}\}_\{w^\{\prime \},\pi \}(\Omega )$ are equivalent. Furthermore, we can replace $L^\{p\}_\{w,\pi \}(\Omega )$ and $L^\{p^\{\prime \}\}_\{w^\{\prime \},\pi \}(\Omega )$ by $L^\{p\}_\{w,\sigma \}(\Omega )$ and $L^\{p^\{\prime \}\}_\{w^\{\prime \},\sigma \}(\Omega )$, respectively. The proof is based on the reflexivity and orthogonality of $L^\{p\}_\{w,\pi \}(\Omega )$ and $L^\{p\}_\{w,\sigma \}(\Omega )$ and the Hahn-Banach theorem. As a corollary of our main result, we obtain the extrapolation theorem with the aid of the Helmholtz projection of $(L^\{p\}_\{w\}(\Omega ))^\{n\}$.},
author = {Kakizawa, Ryôhei},
journal = {Czechoslovak Mathematical Journal},
keywords = {Helmholtz decomposition; Muckenhoupt $A_\{p\}$-weighted $L^\{p\}$-spaces; variational estimate},
language = {eng},
number = {3},
pages = {771-789},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Equivalent conditions for the validity of the Helmholtz decomposition of Muckenhoupt $A_\{p\}$-weighted $L^\{p\}$-spaces},
url = {http://eudml.org/doc/294364},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Kakizawa, Ryôhei
TI - Equivalent conditions for the validity of the Helmholtz decomposition of Muckenhoupt $A_{p}$-weighted $L^{p}$-spaces
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 3
SP - 771
EP - 789
AB - We discuss the validity of the Helmholtz decomposition of the Muckenhoupt $A_{p}$-weighted $L^{p}$-space $(L^{p}_{w}(\Omega ))^{n}$ for any domain $\Omega $ in $\mathbb {R}^{n}$, $n \in \mathbb {Z}$, $n\ge 2$, $1<p<\infty $ and Muckenhoupt $A_{p}$-weight $w \in A_{p}$. Set $p^{\prime }:={p}/{(p-1)}$ and $w^{\prime }:=w^{-{1}/{(p-1)}}$. Then the Helmholtz decomposition of $(L^{p}_{w}(\Omega ))^{n}$ and $(L^{p^{\prime }}_{w^{\prime }}(\Omega ))^{n}$ and the variational estimate of $L^{p}_{w,\pi }(\Omega )$ and $L^{p^{\prime }}_{w^{\prime },\pi }(\Omega )$ are equivalent. Furthermore, we can replace $L^{p}_{w,\pi }(\Omega )$ and $L^{p^{\prime }}_{w^{\prime },\pi }(\Omega )$ by $L^{p}_{w,\sigma }(\Omega )$ and $L^{p^{\prime }}_{w^{\prime },\sigma }(\Omega )$, respectively. The proof is based on the reflexivity and orthogonality of $L^{p}_{w,\pi }(\Omega )$ and $L^{p}_{w,\sigma }(\Omega )$ and the Hahn-Banach theorem. As a corollary of our main result, we obtain the extrapolation theorem with the aid of the Helmholtz projection of $(L^{p}_{w}(\Omega ))^{n}$.
LA - eng
KW - Helmholtz decomposition; Muckenhoupt $A_{p}$-weighted $L^{p}$-spaces; variational estimate
UR - http://eudml.org/doc/294364
ER -

References

top
  1. Rham, G. de, Variétés différentiables. Formes, courants, formes harmoniques, Publications de l'Institut de Mathématique de l'Université de Nancago III. Actualités Scientifiques et Industrielles 1222 b, Hermann, Paris (1973), French. (1973) Zbl0284.58001MR0346830
  2. Fabes, E., Mendez, O., Mitrea, M., 10.1006/jfan.1998.3316, J. Funct. Anal. 159 (1998), 323-368. (1998) Zbl0930.35045MR1658089DOI10.1006/jfan.1998.3316
  3. Farwig, R., Weighted -Helmholtz decompositions in infinite cylinders and in infinite layers, Adv. Differ. Equ. 8 (2003), 357-384. (2003) Zbl1038.35068MR1948530
  4. Farwig, R., Kozono, H., Sohr, H., 10.1007/BF02588049, Acta Math. 195 (2005), 21-53. (2005) Zbl1111.35033MR2233684DOI10.1007/BF02588049
  5. Farwig, R., Kozono, H., Sohr, H., 10.1007/s00013-006-1910-8, Arch. Math. 88 (2007), 239-248. (2007) Zbl1121.35097MR2305602DOI10.1007/s00013-006-1910-8
  6. Farwig, R., Sohr, H., 10.2969/jmsj/04920251, J. Math. Soc. Japan 49 (1997), 251-288. (1997) Zbl0918.35106MR1601373DOI10.2969/jmsj/04920251
  7. Fröhlich, A., The Helmholtz decomposition of weighted -spaces for Muckenhoupt weights, Ann. Univ. Ferrara, Nuova Ser., Sez. VII 46 (2000), 11-19. (2000) Zbl1034.35089MR1896920
  8. Fröhlich, A., 10.1007/PL00012601, J. Evol. Equ. 2 (2002), 471-493. (2002) Zbl1040.35059MR1941038DOI10.1007/PL00012601
  9. Fröhlich, A., 10.1007/s00021-003-0080-8, J. Math. Fluid Mech. 5 (2003), 166-199. (2003) Zbl1040.35060MR1982327DOI10.1007/s00021-003-0080-8
  10. Fröhlich, A., 10.1007/s00208-007-0114-2, Math. Ann. 339 (2007), 287-316. (2007) Zbl1126.35041MR2324721DOI10.1007/s00208-007-0114-2
  11. García-Cuerva, J., Francia, J. L. Rubio de, 10.1016/s0304-0208(08)x7154-3, North-Holland Mathematics Studies 116, North-Holland, Amsterdam (1985). (1985) Zbl0578.46046MR0807149DOI10.1016/s0304-0208(08)x7154-3
  12. Geng, J., Shen, Z., 10.1016/j.jfa.2010.07.005, J. Funct. Anal. 259 (2010), 2147-2164. (2010) Zbl1195.35128MR2671125DOI10.1016/j.jfa.2010.07.005
  13. Kim, A. S., Shen, Z., 10.1016/j.jfa.2008.06.032, J. Funct. Anal. 255 (2008), 1817-1830. (2008) Zbl1180.35202MR2442084DOI10.1016/j.jfa.2008.06.032
  14. Kobayashi, T., Kubo, T., 10.21099/tkbjm/1389972027, Tsukuba J. Math. 37 (2013), 179-205. (2013) Zbl1282.35103MR3161575DOI10.21099/tkbjm/1389972027
  15. Lang, J., Méndez, O., 10.1007/s11118-006-9008-2, Potential Anal. 24 (2006), 385-406. (2006) Zbl1220.35120MR2224756DOI10.1007/s11118-006-9008-2
  16. Maekawa, Y., Miura, H., 10.1007/s00208-014-1033-7, Math. Ann. 359 (2014), 1077-1095. (2014) Zbl1295.35184MR3231025DOI10.1007/s00208-014-1033-7
  17. Simader, C. G., Sohr, H., Varnhorn, W., 10.1007/s11565-013-0193-9, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 60 (2014), 245-262. (2014) Zbl1304.35506MR3208796DOI10.1007/s11565-013-0193-9

NotesEmbed ?

top

You must be logged in to post comments.