On the uniform perfectness of groups of bundle homeomorphisms
Archivum Mathematicum (2019)
- Volume: 055, Issue: 5, page 333-339
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topRybicki, Tomasz. "On the uniform perfectness of groups of bundle homeomorphisms." Archivum Mathematicum 055.5 (2019): 333-339. <http://eudml.org/doc/294380>.
@article{Rybicki2019,
abstract = {Groups of homeomorphisms related to locally trivial bundles are studied. It is shown that these groups are perfect. Moreover if the homeomorphism isotopy group of the base is bounded then the bundle homeomorphism group of the total space is uniformly perfect.},
author = {Rybicki, Tomasz},
journal = {Archivum Mathematicum},
keywords = {homeomorphism group; uniformly perfect; continuously perfect; bounded; locally trivial bundle},
language = {eng},
number = {5},
pages = {333-339},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the uniform perfectness of groups of bundle homeomorphisms},
url = {http://eudml.org/doc/294380},
volume = {055},
year = {2019},
}
TY - JOUR
AU - Rybicki, Tomasz
TI - On the uniform perfectness of groups of bundle homeomorphisms
JO - Archivum Mathematicum
PY - 2019
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 055
IS - 5
SP - 333
EP - 339
AB - Groups of homeomorphisms related to locally trivial bundles are studied. It is shown that these groups are perfect. Moreover if the homeomorphism isotopy group of the base is bounded then the bundle homeomorphism group of the total space is uniformly perfect.
LA - eng
KW - homeomorphism group; uniformly perfect; continuously perfect; bounded; locally trivial bundle
UR - http://eudml.org/doc/294380
ER -
References
top- Anderson, R.D., On homeomorphisms as products of a given homeomorphism and its inverse, Topology of 3-manifolds (M. Fort ed., ed.), Prentice-Hall, 1961, pp. 231–237. (1961) MR0139684
- Burago, D., Ivanov, S., Polterovich, L., 10.2969/aspm/05210221, Adv. Stud. Pure Math. 52 (2008), 221–250, Groups of diffeomorphisms. (2008) MR2509711DOI10.2969/aspm/05210221
- Edwards, R.D., Kirby, R.C., 10.2307/1970753, Ann. Math. (2) 93 (1971), 63–88. (1971) MR0283802DOI10.2307/1970753
- Epstein, D.B.A., The simplicity of certain groups of homeomorphisms, Compositio Math. 22 (2) (1970), 165–173. (1970) MR0267589
- Fisher, G.M., 10.1090/S0002-9947-1960-0117712-9, Trans. Amer. Math. Soc. 97 (1960), 193–212. (1960) MR0117712DOI10.1090/S0002-9947-1960-0117712-9
- Fukui, K., Imanishi, H., 10.2969/jmsj/05110227, J. Math. Soc. Japan 51 (1) (1999), 227–236. (1999) MR1661044DOI10.2969/jmsj/05110227
- Kowalik, A., Rybicki, T., 10.2478/s11533-011-0081-4, Cent. Eur. J. Math. 9 (2011), 1217–1231. (2011) MR2836715DOI10.2478/s11533-011-0081-4
- Lech, J., Michalik, I., Rybicki, T., 10.7494/OpMath.2018.38.3.395, Opuscula Math. 38 (2018), 395–408. (2018) MR3781620DOI10.7494/OpMath.2018.38.3.395
- Ling, W., Factorizable groups of homeomorphisms, Compositio Math. 51 (1) (1984), 41–51. (1984) MR0734783
- Mather, J.N., 10.1016/0040-9383(71)90022-X, Topology 10 (1971), 297–298. (1971) MR0288777DOI10.1016/0040-9383(71)90022-X
- McDuff, D., 10.1112/jlms/s2-18.2.353, J. London Math. Soc. (2) 18 (1978), 353–364. (1978) MR0509952DOI10.1112/jlms/s2-18.2.353
- Michalik, I., Rybicki, T., On the structure of the commutator subgroup of certain homeomorphism groups, Topology Appl. 158 (2011), 1314–1324. (2011) MR2806364
- Munkres, J., Elementary differential topology, Ann. Math. Studies, vol. 54, Princeton University Press, 1966. (1966) MR0198479
- Rybicki, T., 10.1016/j.topol.2006.12.003, Topology Appl. 154 (2007), 1561–1564. (2007) MR2317062DOI10.1016/j.topol.2006.12.003
- Rybicki, T., 10.1007/s10711-010-9525-4, Geom. Dedicata 151 (1) (2011), 175–186. (2011) MR2780744DOI10.1007/s10711-010-9525-4
- Rybicki, T., 10.1007/s10455-011-9253-5, Ann. Global Anal. Geom. 40 (2011), 191–202. (2011) MR2811625DOI10.1007/s10455-011-9253-5
- Siebenmann, L.C., 10.1007/BF02566793, 2, Comment. Math. Helv. 47 (1972), 123–163. (1972) MR0319207DOI10.1007/BF02566793
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.