On the uniform perfectness of groups of bundle homeomorphisms

Tomasz Rybicki

Archivum Mathematicum (2019)

  • Volume: 055, Issue: 5, page 333-339
  • ISSN: 0044-8753

Abstract

top
Groups of homeomorphisms related to locally trivial bundles are studied. It is shown that these groups are perfect. Moreover if the homeomorphism isotopy group of the base is bounded then the bundle homeomorphism group of the total space is uniformly perfect.

How to cite

top

Rybicki, Tomasz. "On the uniform perfectness of groups of bundle homeomorphisms." Archivum Mathematicum 055.5 (2019): 333-339. <http://eudml.org/doc/294380>.

@article{Rybicki2019,
abstract = {Groups of homeomorphisms related to locally trivial bundles are studied. It is shown that these groups are perfect. Moreover if the homeomorphism isotopy group of the base is bounded then the bundle homeomorphism group of the total space is uniformly perfect.},
author = {Rybicki, Tomasz},
journal = {Archivum Mathematicum},
keywords = {homeomorphism group; uniformly perfect; continuously perfect; bounded; locally trivial bundle},
language = {eng},
number = {5},
pages = {333-339},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the uniform perfectness of groups of bundle homeomorphisms},
url = {http://eudml.org/doc/294380},
volume = {055},
year = {2019},
}

TY - JOUR
AU - Rybicki, Tomasz
TI - On the uniform perfectness of groups of bundle homeomorphisms
JO - Archivum Mathematicum
PY - 2019
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 055
IS - 5
SP - 333
EP - 339
AB - Groups of homeomorphisms related to locally trivial bundles are studied. It is shown that these groups are perfect. Moreover if the homeomorphism isotopy group of the base is bounded then the bundle homeomorphism group of the total space is uniformly perfect.
LA - eng
KW - homeomorphism group; uniformly perfect; continuously perfect; bounded; locally trivial bundle
UR - http://eudml.org/doc/294380
ER -

References

top
  1. Anderson, R.D., On homeomorphisms as products of a given homeomorphism and its inverse, Topology of 3-manifolds (M. Fort ed., ed.), Prentice-Hall, 1961, pp. 231–237. (1961) MR0139684
  2. Burago, D., Ivanov, S., Polterovich, L., 10.2969/aspm/05210221, Adv. Stud. Pure Math. 52 (2008), 221–250, Groups of diffeomorphisms. (2008) MR2509711DOI10.2969/aspm/05210221
  3. Edwards, R.D., Kirby, R.C., 10.2307/1970753, Ann. Math. (2) 93 (1971), 63–88. (1971) MR0283802DOI10.2307/1970753
  4. Epstein, D.B.A., The simplicity of certain groups of homeomorphisms, Compositio Math. 22 (2) (1970), 165–173. (1970) MR0267589
  5. Fisher, G.M., 10.1090/S0002-9947-1960-0117712-9, Trans. Amer. Math. Soc. 97 (1960), 193–212. (1960) MR0117712DOI10.1090/S0002-9947-1960-0117712-9
  6. Fukui, K., Imanishi, H., 10.2969/jmsj/05110227, J. Math. Soc. Japan 51 (1) (1999), 227–236. (1999) MR1661044DOI10.2969/jmsj/05110227
  7. Kowalik, A., Rybicki, T., 10.2478/s11533-011-0081-4, Cent. Eur. J. Math. 9 (2011), 1217–1231. (2011) MR2836715DOI10.2478/s11533-011-0081-4
  8. Lech, J., Michalik, I., Rybicki, T., 10.7494/OpMath.2018.38.3.395, Opuscula Math. 38 (2018), 395–408. (2018) MR3781620DOI10.7494/OpMath.2018.38.3.395
  9. Ling, W., Factorizable groups of homeomorphisms, Compositio Math. 51 (1) (1984), 41–51. (1984) MR0734783
  10. Mather, J.N., 10.1016/0040-9383(71)90022-X, Topology 10 (1971), 297–298. (1971) MR0288777DOI10.1016/0040-9383(71)90022-X
  11. McDuff, D., 10.1112/jlms/s2-18.2.353, J. London Math. Soc. (2) 18 (1978), 353–364. (1978) MR0509952DOI10.1112/jlms/s2-18.2.353
  12. Michalik, I., Rybicki, T., On the structure of the commutator subgroup of certain homeomorphism groups, Topology Appl. 158 (2011), 1314–1324. (2011) MR2806364
  13. Munkres, J., Elementary differential topology, Ann. Math. Studies, vol. 54, Princeton University Press, 1966. (1966) MR0198479
  14. Rybicki, T., 10.1016/j.topol.2006.12.003, Topology Appl. 154 (2007), 1561–1564. (2007) MR2317062DOI10.1016/j.topol.2006.12.003
  15. Rybicki, T., 10.1007/s10711-010-9525-4, Geom. Dedicata 151 (1) (2011), 175–186. (2011) MR2780744DOI10.1007/s10711-010-9525-4
  16. Rybicki, T., 10.1007/s10455-011-9253-5, Ann. Global Anal. Geom. 40 (2011), 191–202. (2011) MR2811625DOI10.1007/s10455-011-9253-5
  17. Siebenmann, L.C., 10.1007/BF02566793, 2, Comment. Math. Helv. 47 (1972), 123–163. (1972) MR0319207DOI10.1007/BF02566793

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.