Stabilization of nonlinear systems with varying parameter by a control Lyapunov function
Wajdi Kallel; Thouraya Kharrat
Kybernetika (2017)
- Volume: 53, Issue: 5, page 853-867
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topKallel, Wajdi, and Kharrat, Thouraya. "Stabilization of nonlinear systems with varying parameter by a control Lyapunov function." Kybernetika 53.5 (2017): 853-867. <http://eudml.org/doc/294394>.
@article{Kallel2017,
abstract = {In this paper, we provide an explicit homogeneous feedback control with the requirement that a control Lyapunov function exists for affine in control systems with bounded parameter that satisfies an homogeneous condition. We use a modified version of the Sontag's formula to achieve our main goal. Moreover, we prove that the existence of an homogeneous control Lyapunov function for an homogeneous system leads to an homogeneous closed-loop system which is asymptotically stable by an homogeneous feedback control. In addition, we study the finite time stability for affine in control systems with varying parameter.},
author = {Kallel, Wajdi, Kharrat, Thouraya},
journal = {Kybernetika},
keywords = {feedback stabilization; homogeneous system; nonlinear control systems; Lyapunov function; finite time stability},
language = {eng},
number = {5},
pages = {853-867},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Stabilization of nonlinear systems with varying parameter by a control Lyapunov function},
url = {http://eudml.org/doc/294394},
volume = {53},
year = {2017},
}
TY - JOUR
AU - Kallel, Wajdi
AU - Kharrat, Thouraya
TI - Stabilization of nonlinear systems with varying parameter by a control Lyapunov function
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 5
SP - 853
EP - 867
AB - In this paper, we provide an explicit homogeneous feedback control with the requirement that a control Lyapunov function exists for affine in control systems with bounded parameter that satisfies an homogeneous condition. We use a modified version of the Sontag's formula to achieve our main goal. Moreover, we prove that the existence of an homogeneous control Lyapunov function for an homogeneous system leads to an homogeneous closed-loop system which is asymptotically stable by an homogeneous feedback control. In addition, we study the finite time stability for affine in control systems with varying parameter.
LA - eng
KW - feedback stabilization; homogeneous system; nonlinear control systems; Lyapunov function; finite time stability
UR - http://eudml.org/doc/294394
ER -
References
top- Artstein, Z., 10.1016/0362-546x(83)90049-4, Nonlinear Anal. TMA 7 (1983), 1163-1173. Zbl0525.93053MR0721403DOI10.1016/0362-546x(83)90049-4
- Bhat, S. P., Bernstein, D. S., 10.1109/9.668834, IEEE Trans. Automat. Control 43 (1998), 678-682. Zbl0925.93821MR1618028DOI10.1109/9.668834
- Cai, X. S., Han, Z. Z., Zhang, W., 10.3724/sp.j.1004.2009.00206, Acta Automat. Sinica 35 (2009), 206-209. MR2531861DOI10.3724/sp.j.1004.2009.00206
- Čelikovský, S., Aranda-Bricaire, E., 10.1016/s0167-6911(98)00062-0, Systems Control Lett. 36 (1999), 21-37. MR1750623DOI10.1016/s0167-6911(98)00062-0
- Huang, J., Yu, L., Xia, S., 10.1007/s00034-014-9741-5, Circuits Systems Signal Process. 33 (2015), 2319-2331. MR3217482DOI10.1007/s00034-014-9741-5
- Hong, Y., Wang, J., Cheng, D., 10.1109/tac.2006.875006, IEEE Trans. Automat. Control 51 (2006), 858-862. MR2232614DOI10.1109/tac.2006.875006
- Jerbi, H., 10.1016/s0167-6911(01)00172-4, Systems Control Lett. 41 (2002), 173-178. MR2072233DOI10.1016/s0167-6911(01)00172-4
- Jerbi, H., Kallel, W., Kharrat, T., 10.1007/s10883-008-9053-9, J. Dynamical Control Syst. 14 (2008), 595-606. MR2448693DOI10.1007/s10883-008-9053-9
- Jerbi, H., Kharrat, T., Only a level set of a control Lyapunov function for homogeneous systems., Kybernetika 41 (2005), 593-600. MR2192425
- Krstic, M., Kokotovic, P. V., 10.1016/0167-6911(94)00107-7, Systems Control Lett. 26 (1995), 17-23. MR1347637DOI10.1016/0167-6911(94)00107-7
- Massera, J. L., 10.2307/1969955, Ann. Math. 64 (1956), 182-206. MR0079179DOI10.2307/1969955
- Moulay, E., 10.1016/j.automatica.2008.05.003, Automatica 44 (2008), 2981-2984. MR2527229DOI10.1016/j.automatica.2008.05.003
- Moulay, E., Perruquetti, W., 10.1016/j.jmaa.2005.11.046, J. Math. Anal. Appl. 323 (2006), 1430-1443. Zbl1131.93043MR2260193DOI10.1016/j.jmaa.2005.11.046
- Rosier, L., 10.1016/0167-6911(92)90078-7, Systems Control Lett. 19 (1992), 467-473. Zbl0762.34032MR1195304DOI10.1016/0167-6911(92)90078-7
- Sepulchre, R., Aeyels, D., 10.1007/bf01211517, Math. Control Signals Syst. 9 (1996), 34-58. MR1410047DOI10.1007/bf01211517
- Shafiei, M. H., Yazdanpanah, M. J., 10.1016/j.isatra.2009.11.004, ISA Trans. 49 (2010), 215-221. DOI10.1016/j.isatra.2009.11.004
- Sontag, E. D., 10.1016/0167-6911(89)90028-5, Systems Control Lett. 13 (1989), 117-123. MR1014237DOI10.1016/0167-6911(89)90028-5
- Sontag, E. D., 10.1137/0321028, SIAM J. Control Optim. 21 (1983), 462-471. MR0696908DOI10.1137/0321028
- Tsinias, J., 10.1016/0362-546x(88)90060-0, Nonlinear Anal. TMA 12 (1988), 1283-1296. Zbl0662.93055MR0969506DOI10.1016/0362-546x(88)90060-0
- Tsinias, J., 10.1007/bf02551276, Math. Control Signals Syst. 2 (1989), 343-357. Zbl0688.93048MR1015672DOI10.1007/bf02551276
- Zhang, W., Su, H., Cai, X., Guo, H., 10.1007/s00034-014-9848-8, Circuits Systems Signal Process. 34 (2015), 341-352. MR3299171DOI10.1007/s00034-014-9848-8
- Wang, H., Han, Z., Zhang, W., Xie, Q., 10.1016/j.nonrwa.2008.08.010, Nonlinear Analysis: Real World Appl. 10 (2009), 2842-2849. MR2523247DOI10.1016/j.nonrwa.2008.08.010
- Wang, H., Han, Z., Zhang, W., Xie, Q., 10.1016/j.jsv.2008.07.023, J. Sound Vibration 320 (2009), 365-372. MR2335867DOI10.1016/j.jsv.2008.07.023
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.