Only a level set of a control Lyapunov function for homogeneous systems

Hamadi Jerbi; Thouraya Kharrat

Kybernetika (2005)

  • Volume: 41, Issue: 5, page [593]-600
  • ISSN: 0023-5954

Abstract

top
In this paper, we generalize Artstein’s theorem and we derive sufficient conditions for stabilization of single-input homogeneous systems by means of an homogeneous feedback law and we treat an application for a bilinear system.

How to cite

top

Jerbi, Hamadi, and Kharrat, Thouraya. "Only a level set of a control Lyapunov function for homogeneous systems." Kybernetika 41.5 (2005): [593]-600. <http://eudml.org/doc/33776>.

@article{Jerbi2005,
abstract = {In this paper, we generalize Artstein’s theorem and we derive sufficient conditions for stabilization of single-input homogeneous systems by means of an homogeneous feedback law and we treat an application for a bilinear system.},
author = {Jerbi, Hamadi, Kharrat, Thouraya},
journal = {Kybernetika},
keywords = {homogeneous systems; homogeneous feedbacks; stabilizability; sub manifold; vector field; homogeneous system; homogeneous feedback; stabilizability; submanifold},
language = {eng},
number = {5},
pages = {[593]-600},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Only a level set of a control Lyapunov function for homogeneous systems},
url = {http://eudml.org/doc/33776},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Jerbi, Hamadi
AU - Kharrat, Thouraya
TI - Only a level set of a control Lyapunov function for homogeneous systems
JO - Kybernetika
PY - 2005
PB - Institute of Information Theory and Automation AS CR
VL - 41
IS - 5
SP - [593]
EP - 600
AB - In this paper, we generalize Artstein’s theorem and we derive sufficient conditions for stabilization of single-input homogeneous systems by means of an homogeneous feedback law and we treat an application for a bilinear system.
LA - eng
KW - homogeneous systems; homogeneous feedbacks; stabilizability; sub manifold; vector field; homogeneous system; homogeneous feedback; stabilizability; submanifold
UR - http://eudml.org/doc/33776
ER -

References

top
  1. Artstein Z., 10.1016/0362-546X(83)90049-4, Nonlinear. Anal. 7 (1983), 1163–1173 (1983) Zbl0525.93053MR0721403DOI10.1016/0362-546X(83)90049-4
  2. Faubourg L., Pomet J. P., 10.1051/cocv:2000112, ESAIM: Control, Optimization and Calculus of Variations 5 (2000), 293–311 Zbl0959.93046MR1765428DOI10.1051/cocv:2000112
  3. Goodman R. W., Nilpotent Lie Groups: Structure and Applications to Analysis, (Lecture Notes in Mathematics 562.) Springer–Verlag, Berlin 1976 Zbl0347.22001MR0442149
  4. Hermes H., 10.1137/1033050, SIAM Rev. 33 (1991), 238–264 (1991) Zbl0733.93062MR1108590DOI10.1137/1033050
  5. Jerbi H., 10.1016/S0167-6911(01)00172-4, Systems Control Lett. 45 (2002), 173–178 Zbl0987.93060MR2072233DOI10.1016/S0167-6911(01)00172-4
  6. Kawski M., Homogeneous stabilizing feedback laws, Control Theory and Advanced Technology 6 (1990), 497–516 (1990) MR1092775
  7. Closkey R. Mac, Murray M., 10.1109/9.580865, IEEE Trans. Automat. Control 42 (1997), 614–628 (1997) MR1454204DOI10.1109/9.580865
  8. Closkey R. Mac, Morin P., 10.1080/002071798221605, Internat. J. Control 71 (1998), 837–869 (1998) MR1658500DOI10.1080/002071798221605
  9. Sontag E. D., 10.1016/0167-6911(89)90028-5, Systems Control Lett. 13 (1989) (1989) Zbl0684.93063MR1014237DOI10.1016/0167-6911(89)90028-5
  10. Tsinias J., 10.1016/0362-546X(88)90060-0, Nonlinear Anal. 12 (1988), 1238–1296 (1988) Zbl0662.93055MR0969506DOI10.1016/0362-546X(88)90060-0
  11. Tsinias J., 10.1007/BF02551276, Math. Control Signals Systems 2 (1989), 343–357 (1989) Zbl0688.93048MR1015672DOI10.1007/BF02551276

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.