Only a level set of a control Lyapunov function for homogeneous systems
Hamadi Jerbi; Thouraya Kharrat
Kybernetika (2005)
- Volume: 41, Issue: 5, page [593]-600
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topJerbi, Hamadi, and Kharrat, Thouraya. "Only a level set of a control Lyapunov function for homogeneous systems." Kybernetika 41.5 (2005): [593]-600. <http://eudml.org/doc/33776>.
@article{Jerbi2005,
abstract = {In this paper, we generalize Artstein’s theorem and we derive sufficient conditions for stabilization of single-input homogeneous systems by means of an homogeneous feedback law and we treat an application for a bilinear system.},
author = {Jerbi, Hamadi, Kharrat, Thouraya},
journal = {Kybernetika},
keywords = {homogeneous systems; homogeneous feedbacks; stabilizability; sub manifold; vector field; homogeneous system; homogeneous feedback; stabilizability; submanifold},
language = {eng},
number = {5},
pages = {[593]-600},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Only a level set of a control Lyapunov function for homogeneous systems},
url = {http://eudml.org/doc/33776},
volume = {41},
year = {2005},
}
TY - JOUR
AU - Jerbi, Hamadi
AU - Kharrat, Thouraya
TI - Only a level set of a control Lyapunov function for homogeneous systems
JO - Kybernetika
PY - 2005
PB - Institute of Information Theory and Automation AS CR
VL - 41
IS - 5
SP - [593]
EP - 600
AB - In this paper, we generalize Artstein’s theorem and we derive sufficient conditions for stabilization of single-input homogeneous systems by means of an homogeneous feedback law and we treat an application for a bilinear system.
LA - eng
KW - homogeneous systems; homogeneous feedbacks; stabilizability; sub manifold; vector field; homogeneous system; homogeneous feedback; stabilizability; submanifold
UR - http://eudml.org/doc/33776
ER -
References
top- Artstein Z., 10.1016/0362-546X(83)90049-4, Nonlinear. Anal. 7 (1983), 1163–1173 (1983) Zbl0525.93053MR0721403DOI10.1016/0362-546X(83)90049-4
- Faubourg L., Pomet J. P., 10.1051/cocv:2000112, ESAIM: Control, Optimization and Calculus of Variations 5 (2000), 293–311 Zbl0959.93046MR1765428DOI10.1051/cocv:2000112
- Goodman R. W., Nilpotent Lie Groups: Structure and Applications to Analysis, (Lecture Notes in Mathematics 562.) Springer–Verlag, Berlin 1976 Zbl0347.22001MR0442149
- Hermes H., 10.1137/1033050, SIAM Rev. 33 (1991), 238–264 (1991) Zbl0733.93062MR1108590DOI10.1137/1033050
- Jerbi H., 10.1016/S0167-6911(01)00172-4, Systems Control Lett. 45 (2002), 173–178 Zbl0987.93060MR2072233DOI10.1016/S0167-6911(01)00172-4
- Kawski M., Homogeneous stabilizing feedback laws, Control Theory and Advanced Technology 6 (1990), 497–516 (1990) MR1092775
- Closkey R. Mac, Murray M., 10.1109/9.580865, IEEE Trans. Automat. Control 42 (1997), 614–628 (1997) MR1454204DOI10.1109/9.580865
- Closkey R. Mac, Morin P., 10.1080/002071798221605, Internat. J. Control 71 (1998), 837–869 (1998) MR1658500DOI10.1080/002071798221605
- Sontag E. D., 10.1016/0167-6911(89)90028-5, Systems Control Lett. 13 (1989) (1989) Zbl0684.93063MR1014237DOI10.1016/0167-6911(89)90028-5
- Tsinias J., 10.1016/0362-546X(88)90060-0, Nonlinear Anal. 12 (1988), 1238–1296 (1988) Zbl0662.93055MR0969506DOI10.1016/0362-546X(88)90060-0
- Tsinias J., 10.1007/BF02551276, Math. Control Signals Systems 2 (1989), 343–357 (1989) Zbl0688.93048MR1015672DOI10.1007/BF02551276
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.