Generalized derivations acting on multilinear polynomials in prime rings

Basudeb Dhara

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 1, page 95-119
  • ISSN: 0011-4642

How to cite

top

Dhara, Basudeb. "Generalized derivations acting on multilinear polynomials in prime rings." Czechoslovak Mathematical Journal 68.1 (2018): 95-119. <http://eudml.org/doc/294396>.

@article{Dhara2018,
abstract = {},
author = {Dhara, Basudeb},
journal = {Czechoslovak Mathematical Journal},
keywords = {prime ring; derivation; generalized derivation; extended centroid; Utumi quotient ring},
language = {eng},
number = {1},
pages = {95-119},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Generalized derivations acting on multilinear polynomials in prime rings},
url = {http://eudml.org/doc/294396},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Dhara, Basudeb
TI - Generalized derivations acting on multilinear polynomials in prime rings
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 1
SP - 95
EP - 119
AB -
LA - eng
KW - prime ring; derivation; generalized derivation; extended centroid; Utumi quotient ring
UR - http://eudml.org/doc/294396
ER -

References

top
  1. Albaş, E., 10.18514/MMN.2013.499, Miskolc Math. Notes 14 (2013), 3-9. (2013) Zbl1289.16082MR3070683DOI10.18514/MMN.2013.499
  2. Ali, S., Huang, S., On generalized Jordan ( α , β ) -derivations that act as homomorphisms or anti-homomorphisms, J. Algebra Comput. Appl. (electronic only) 1 (2011), 13-19. (2011) Zbl1291.16038MR2862508
  3. Argaç, N., Filippis, V. De, 10.1142/S1005386711000836, Algebra Colloq. 18, Spec. Iss. 1 (2011), 955-964. (2011) Zbl1297.16037MR2860377DOI10.1142/S1005386711000836
  4. Asma, A., Rehman, N., Shakir, A., 10.1023/B:AMHU.0000003893.61349.98, Acta Math. Hungar 101 (2003), 79-82. (2003) Zbl1053.16025MR2011464DOI10.1023/B:AMHU.0000003893.61349.98
  5. Bell, H. E., Kappe, L. C., 10.1007/BF01953371, Acta Math. Hung. 53 (1989), 339-346 9999DOI99999 10.1007/BF01953371 . (1989) Zbl0705.16021MR1014917DOI10.1007/BF01953371
  6. Bergen, J., Herstein, I. N., Keer, J. W., 10.1016/0021-8693(81)90120-4, J. Algebra 71 (1981), 259-267. (1981) Zbl0463.16023MR0627439DOI10.1016/0021-8693(81)90120-4
  7. Carini, L., Filippis, V. De, Scudo, G., 10.1142/S1005386713000680, Algebra Colloq. 20 (2013), 711-720. (2013) Zbl1285.16036MR3116800DOI10.1142/S1005386713000680
  8. Chuang, C.-L., 10.1007/BF02779669, Isr. J. Math. 59 (1987), 98-106. (1987) Zbl0631.16015MR0923664DOI10.1007/BF02779669
  9. Chuang, C.-L., 10.2307/2046841, Proc. Am. Math. Soc. 103 (1988), 723-728. (1988) Zbl0656.16006MR0947646DOI10.2307/2046841
  10. Filippis, V. De, 10.1007/s10114-009-7343-0, Acta Math. Sin., Engl. Ser. 25 (2009), 1965-1974. (2009) Zbl1192.16042MR2578635DOI10.1007/s10114-009-7343-0
  11. Filippis, V. De, Vincenzo, O. M. Di, 10.1080/00927872.2011.553859, Commun. Algebra 40 (2012), 1918-1932. (2012) Zbl1258.16043MR2945689DOI10.1080/00927872.2011.553859
  12. Filippis, V. De, Scudo, G., 10.5486/PMD.2015.7070, Publ. Math. 86 (2015), 187-212. (2015) Zbl1341.16040MR3300586DOI10.5486/PMD.2015.7070
  13. Dhara, B., Derivations with Engel conditions on multilinear polynomials in prime rings, Demonstr. Math. 42 (2009), 467-478. (2009) Zbl1188.16037MR2554943
  14. Dhara, B., 10.1007/s13366-011-0051-9, Beitr. Algebra Geom. 53 (2012), 203-209. (2012) Zbl1242.16039MR2890375DOI10.1007/s13366-011-0051-9
  15. Dhara, B., Huang, S., Pattanayak, A., Generalized derivations and multilinear polynomials in prime rings, Bull. Malays. Math. Sci. Soc. 36 (2013), 1071-1081. (2013) Zbl1281.16046MR3108796
  16. Dhara, B., Rehman, N. U., Raza, M. A., 10.18514/MMN.2015.1343, Miskolc Math. Notes 16 (2015), 769-779. (2015) Zbl1349.16068MR3454141DOI10.18514/MMN.2015.1343
  17. Dhara, B., Sahebi, S., Rehmani, V., 10.1515/ms-2015-0065, Math. Slovaca 65 (2015), 963-974. (2015) Zbl06534094MR3433047DOI10.1515/ms-2015-0065
  18. Erickson, T. S., III, W. S. Martindale, Osborn, J. M., 10.2140/pjm.1975.60.49, Pac. J. Math. 60 (1975), 49-63. (1975) Zbl0355.17005MR0382379DOI10.2140/pjm.1975.60.49
  19. Gusić, I., 10.3336/gm.40.1.05, Glas. Mat., III. Ser. 40 (2005), 47-49. (2005) Zbl1072.16031MR2195859DOI10.3336/gm.40.1.05
  20. Jacobson, N., 10.1090/coll/037, American Mathematical Society Colloquium Publications 37, Revised edition American Mathematical Society, Providence (1956). (1956) Zbl0073.02002MR0222106DOI10.1090/coll/037
  21. Kharchenko, V. K., 10.1007/BF01670115, Algebra Logic 17 (1978), 155-168. English. Russian original translation from Algebra Logika 17 1978 220-238. (1978) Zbl0423.16011MR0541758DOI10.1007/BF01670115
  22. Lanski, C., 10.2140/pjm.1988.134.275, Pac. J. Math. 134 (1988), 275-297. (1988) Zbl0614.16028MR0961236DOI10.2140/pjm.1988.134.275
  23. Lanski, C., 10.2307/2160113, Proc. Am. Math. Soc. 118 (1993), 731-734. (1993) Zbl0821.16037MR1132851DOI10.2307/2160113
  24. Lee, T.-K., Semiprime rings with differential identities, Bull. Inst. Math., Acad. Sin. 20 (1992), 27-38. (1992) Zbl0769.16017MR1166215
  25. Lee, T.-K., 10.1080/00927879908826682, Commun. Algebra 27 (1999), 4057-4073. (1999) Zbl0946.16026MR1700189DOI10.1080/00927879908826682
  26. Lee, P.-H., Lee, T.-K., 10.1090/S0002-9939-96-03351-5, Proc. Am. Math. Soc. 124 (1996), 2625-2629. (1996) Zbl0859.16031MR1327023DOI10.1090/S0002-9939-96-03351-5
  27. Leron, U., 10.2307/1997300, Trans. Am. Math. Soc. 202 (1975), 97-103. (1975) Zbl0297.16010MR0354764DOI10.2307/1997300
  28. III, W. S. Martindale, 10.1016/0021-8693(69)90029-5, J. Algebra 12 (1969), 576-584. (1969) Zbl0175.03102MR0238897DOI10.1016/0021-8693(69)90029-5
  29. Posner, E. C., 10.2307/2032686, Proc. Am. Math. Soc. 8 (1957), 1093-1100. (1957) Zbl0082.03003MR0095863DOI10.2307/2032686
  30. Rehman, N. U., 10.3336/gm.39.1.03, Glas. Mat., III. Ser. 39 (2004), 27-30. (2004) Zbl1047.16019MR2055383DOI10.3336/gm.39.1.03
  31. Wang, Y., You, H., 10.1007/s10114-005-0840-x, Acta Math. Sin., Engl. Ser. 23 (2007), 1149-1152. (2007) Zbl1124.16031MR2319944DOI10.1007/s10114-005-0840-x

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.