On the Diophantine equation
Gökhan Soydan; László Németh; László Szalay
Archivum Mathematicum (2018)
- Volume: 054, Issue: 3, page 177-188
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topSoydan, Gökhan, Németh, László, and Szalay, László. "On the Diophantine equation $\sum _{j=1}^kjF_j^p=F_n^q$." Archivum Mathematicum 054.3 (2018): 177-188. <http://eudml.org/doc/294414>.
@article{Soydan2018,
abstract = {Let $F_n$ denote the $n^\{th\}$ term of the Fibonacci sequence. In this paper, we investigate the Diophantine equation $F_1^p+2F_2^p+\cdots +kF_\{k\}^p=F_\{n\}^q$ in the positive integers $k$ and $n$, where $p$ and $q$ are given positive integers. A complete solution is given if the exponents are included in the set $\lbrace 1,2\rbrace $. Based on the specific cases we could solve, and a computer search with $p,q,k\le 100$ we conjecture that beside the trivial solutions only $F_8=F_1+2F_2+3F_3+4F_4$, $F_4^2=F_1+2F_2+3F_3$, and $F_4^3=F_1^3+2F_2^3+3F_3^3$ satisfy the title equation.},
author = {Soydan, Gökhan, Németh, László, Szalay, László},
journal = {Archivum Mathematicum},
keywords = {Fibonacci sequence; Diophantine equation},
language = {eng},
number = {3},
pages = {177-188},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the Diophantine equation $\sum _\{j=1\}^kjF_j^p=F_n^q$},
url = {http://eudml.org/doc/294414},
volume = {054},
year = {2018},
}
TY - JOUR
AU - Soydan, Gökhan
AU - Németh, László
AU - Szalay, László
TI - On the Diophantine equation $\sum _{j=1}^kjF_j^p=F_n^q$
JO - Archivum Mathematicum
PY - 2018
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 054
IS - 3
SP - 177
EP - 188
AB - Let $F_n$ denote the $n^{th}$ term of the Fibonacci sequence. In this paper, we investigate the Diophantine equation $F_1^p+2F_2^p+\cdots +kF_{k}^p=F_{n}^q$ in the positive integers $k$ and $n$, where $p$ and $q$ are given positive integers. A complete solution is given if the exponents are included in the set $\lbrace 1,2\rbrace $. Based on the specific cases we could solve, and a computer search with $p,q,k\le 100$ we conjecture that beside the trivial solutions only $F_8=F_1+2F_2+3F_3+4F_4$, $F_4^2=F_1+2F_2+3F_3$, and $F_4^3=F_1^3+2F_2^3+3F_3^3$ satisfy the title equation.
LA - eng
KW - Fibonacci sequence; Diophantine equation
UR - http://eudml.org/doc/294414
ER -
References
top- Alvarado, S.D., Dujella, A., Luca, F., 10.1515/integers-2012-0032, Integers 12 (2012), 1127–1158. (2012) MR3011553DOI10.1515/integers-2012-0032
- Andreescu, T., Andrica, D., Quadratic Diophantine Equations, 2015, 124–126. (2015) MR3362224
- Behera, A., Liptai, K., Panda, G.K., Szalay, L, Balancing with Fibonacci powers, Fibonacci Quart. 49 (2011), 28–33. (2011) MR2781575
- Chaves, A.P., Marques, D., Togbé, A., 10.1007/s00574-012-0018-y, Bull. Braz. Math. Soc. New Series 43 (2012), 397–406. (2012) MR3024062DOI10.1007/s00574-012-0018-y
- Koshy, T., Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, 2011. (2011) MR1855020
- Luca, F., Oyono, R., An exponential Diophantine equation related to powers of two consecutive Fibonacci numbers, Proc. Japan Acad. Ser. A 87 (2011), 45–50. (2011) MR2803898
- Luca, F., Szalay, L., 10.3336/gm.43.2.03, Glas. Mat. Ser. III 43 (63) (2008), 253–264. (2008) MR2460699DOI10.3336/gm.43.2.03
- Marques, D., Togbé, A., On the sum of powers of two consecutive Fibonacci numbers, Proc. Japan Acad. Ser. A 86 (2010), 174–176. (2010) MR2779831
- Panda, G.K., Sequence balancing and cobalancing numbers, Fibonacci Quart. 45 (2007), 265–271. (2007) MR2438198
- Pongsriiam, P., Fibonacci and Lucas numbers associated with Brocard-Ramanujan equation, Commun. Korean Math. Soc. 91 (3) (2017), 511–522. (2017) MR3682410
- Pongsriiam, P., Fibonacci and Lucas numbers which are one away from their products, Fibonacci Quart. 55 (2017), 29–40. (2017) MR3620575
- Soydan, G., On the Diophantine equation , Publ. Math. Debrecen 91 (3–4) (2017), 369–382. (2017) MR3744801
- Vorob’ev, N.N., Fibonacci Numbers, Blaisdell Pub. Co. New York, 1961. (1961)
- Wulczyn, G., 10.2307/2317203, Amer. Math. Monthly 76 (1969), 1144–1146. (1969) MR1535701DOI10.2307/2317203
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.