On the Diophantine equation j = 1 k j F j p = F n q

Gökhan Soydan; László Németh; László Szalay

Archivum Mathematicum (2018)

  • Volume: 054, Issue: 3, page 177-188
  • ISSN: 0044-8753

Abstract

top
Let F n denote the n t h term of the Fibonacci sequence. In this paper, we investigate the Diophantine equation F 1 p + 2 F 2 p + + k F k p = F n q in the positive integers k and n , where p and q are given positive integers. A complete solution is given if the exponents are included in the set { 1 , 2 } . Based on the specific cases we could solve, and a computer search with p , q , k 100 we conjecture that beside the trivial solutions only F 8 = F 1 + 2 F 2 + 3 F 3 + 4 F 4 , F 4 2 = F 1 + 2 F 2 + 3 F 3 , and F 4 3 = F 1 3 + 2 F 2 3 + 3 F 3 3 satisfy the title equation.

How to cite

top

Soydan, Gökhan, Németh, László, and Szalay, László. "On the Diophantine equation $\sum _{j=1}^kjF_j^p=F_n^q$." Archivum Mathematicum 054.3 (2018): 177-188. <http://eudml.org/doc/294414>.

@article{Soydan2018,
abstract = {Let $F_n$ denote the $n^\{th\}$ term of the Fibonacci sequence. In this paper, we investigate the Diophantine equation $F_1^p+2F_2^p+\cdots +kF_\{k\}^p=F_\{n\}^q$ in the positive integers $k$ and $n$, where $p$ and $q$ are given positive integers. A complete solution is given if the exponents are included in the set $\lbrace 1,2\rbrace $. Based on the specific cases we could solve, and a computer search with $p,q,k\le 100$ we conjecture that beside the trivial solutions only $F_8=F_1+2F_2+3F_3+4F_4$, $F_4^2=F_1+2F_2+3F_3$, and $F_4^3=F_1^3+2F_2^3+3F_3^3$ satisfy the title equation.},
author = {Soydan, Gökhan, Németh, László, Szalay, László},
journal = {Archivum Mathematicum},
keywords = {Fibonacci sequence; Diophantine equation},
language = {eng},
number = {3},
pages = {177-188},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the Diophantine equation $\sum _\{j=1\}^kjF_j^p=F_n^q$},
url = {http://eudml.org/doc/294414},
volume = {054},
year = {2018},
}

TY - JOUR
AU - Soydan, Gökhan
AU - Németh, László
AU - Szalay, László
TI - On the Diophantine equation $\sum _{j=1}^kjF_j^p=F_n^q$
JO - Archivum Mathematicum
PY - 2018
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 054
IS - 3
SP - 177
EP - 188
AB - Let $F_n$ denote the $n^{th}$ term of the Fibonacci sequence. In this paper, we investigate the Diophantine equation $F_1^p+2F_2^p+\cdots +kF_{k}^p=F_{n}^q$ in the positive integers $k$ and $n$, where $p$ and $q$ are given positive integers. A complete solution is given if the exponents are included in the set $\lbrace 1,2\rbrace $. Based on the specific cases we could solve, and a computer search with $p,q,k\le 100$ we conjecture that beside the trivial solutions only $F_8=F_1+2F_2+3F_3+4F_4$, $F_4^2=F_1+2F_2+3F_3$, and $F_4^3=F_1^3+2F_2^3+3F_3^3$ satisfy the title equation.
LA - eng
KW - Fibonacci sequence; Diophantine equation
UR - http://eudml.org/doc/294414
ER -

References

top
  1. Alvarado, S.D., Dujella, A., Luca, F., 10.1515/integers-2012-0032, Integers 12 (2012), 1127–1158. (2012) MR3011553DOI10.1515/integers-2012-0032
  2. Andreescu, T., Andrica, D., Quadratic Diophantine Equations, 2015, 124–126. (2015) MR3362224
  3. Behera, A., Liptai, K., Panda, G.K., Szalay, L, Balancing with Fibonacci powers, Fibonacci Quart. 49 (2011), 28–33. (2011) MR2781575
  4. Chaves, A.P., Marques, D., Togbé, A., 10.1007/s00574-012-0018-y, Bull. Braz. Math. Soc. New Series 43 (2012), 397–406. (2012) MR3024062DOI10.1007/s00574-012-0018-y
  5. Koshy, T., Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, 2011. (2011) MR1855020
  6. Luca, F., Oyono, R., An exponential Diophantine equation related to powers of two consecutive Fibonacci numbers, Proc. Japan Acad. Ser. A 87 (2011), 45–50. (2011) MR2803898
  7. Luca, F., Szalay, L., 10.3336/gm.43.2.03, Glas. Mat. Ser. III 43 (63) (2008), 253–264. (2008) MR2460699DOI10.3336/gm.43.2.03
  8. Marques, D., Togbé, A., On the sum of powers of two consecutive Fibonacci numbers, Proc. Japan Acad. Ser. A 86 (2010), 174–176. (2010) MR2779831
  9. Panda, G.K., Sequence balancing and cobalancing numbers, Fibonacci Quart. 45 (2007), 265–271. (2007) MR2438198
  10. Pongsriiam, P., Fibonacci and Lucas numbers associated with Brocard-Ramanujan equation, Commun. Korean Math. Soc. 91 (3) (2017), 511–522. (2017) MR3682410
  11. Pongsriiam, P., Fibonacci and Lucas numbers which are one away from their products, Fibonacci Quart. 55 (2017), 29–40. (2017) MR3620575
  12. Soydan, G., On the Diophantine equation ( x + 1 ) k + ( x + 2 ) k + + ( l x ) k = y n , Publ. Math. Debrecen 91 (3–4) (2017), 369–382. (2017) MR3744801
  13. Vorob’ev, N.N., Fibonacci Numbers, Blaisdell Pub. Co. New York, 1961. (1961) 
  14. Wulczyn, G., 10.2307/2317203, Amer. Math. Monthly 76 (1969), 1144–1146. (1969) MR1535701DOI10.2307/2317203

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.