On some Diophantine equations involving balancing numbers
Archivum Mathematicum (2021)
- Volume: 057, Issue: 2, page 113-130
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topTchammou, Euloge, and Togbé, Alain. "On some Diophantine equations involving balancing numbers." Archivum Mathematicum 057.2 (2021): 113-130. <http://eudml.org/doc/297477>.
@article{Tchammou2021,
abstract = {In this paper, we find all the solutions of the Diophantine equation $B_1^p+2B_2^p+\cdots +kB_k^p=B_n^q$ in positive integer variables $(k, n)$, where $B_i$ is the $i^\{th\}$ balancing number if the exponents $p$, $ q$ are included in the set $\lbrace 1,2\rbrace $.},
author = {Tchammou, Euloge, Togbé, Alain},
journal = {Archivum Mathematicum},
keywords = {balancing numbers; Pell numbers; Diophantine equation},
language = {eng},
number = {2},
pages = {113-130},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On some Diophantine equations involving balancing numbers},
url = {http://eudml.org/doc/297477},
volume = {057},
year = {2021},
}
TY - JOUR
AU - Tchammou, Euloge
AU - Togbé, Alain
TI - On some Diophantine equations involving balancing numbers
JO - Archivum Mathematicum
PY - 2021
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 057
IS - 2
SP - 113
EP - 130
AB - In this paper, we find all the solutions of the Diophantine equation $B_1^p+2B_2^p+\cdots +kB_k^p=B_n^q$ in positive integer variables $(k, n)$, where $B_i$ is the $i^{th}$ balancing number if the exponents $p$, $ q$ are included in the set $\lbrace 1,2\rbrace $.
LA - eng
KW - balancing numbers; Pell numbers; Diophantine equation
UR - http://eudml.org/doc/297477
ER -
References
top- Altassan, A., Luca, F., On the Diophantine equation , J. Number Theory 217 (2020), 256–277. (2020) MR4140628
- Behera, A., Panda, G.K., On the square roots of triangular numbers, Fibonacci Quart. 37 (2) (1999), 98–105. (1999) MR1690458
- Catarino, P., Campos, H., Vasco, P., On some identities for balancing and cobalancing numbers, Ann. Math. Inform. 45 (2015), 11–24. (2015) MR3438809
- Gueth, K., Luca, F., Szalay, L., Solutions to with small given exponents, Proc. Japan Acad. Ser. A, Math. Sci. 96 (4) (2020), 33–37. (2020) MR4080788
- Horadam, A.F., Pell identities, Fibonacci Quart. 9 (3) (1971), 245–263. (1971) MR0308029
- Niven, I., Zuckerman, H.S., Montgomery, H.L., An Introduction to the Theory of Numbers, fifth edition ed., John Wiley & Sons, Inc., New York, 1991. (1991) MR1083765
- Olajos, P., Properties of Balancing, Cobalancing and Generalized Balancing Numbers, Ann. Math. Inform. 37 (2010), 125–138. (2010) MR2753032
- Panda, G.K., Some Fascinating Properties of Balancing Numbers, Proceedings of the Eleventh International Conference on Fibonacci Numbers and their Applications, Cong. Numer., vol. 194, 2009, pp. 185–189. (2009) MR2463534
- Panda, G.K., Ray, P.K., Some links of balancing and cobalancing numbers with Pell and associated Pell numbers, Bul. Inst. Math. Acad. Sinica 6 (2011), 41–72. (2011) MR2850087
- Ray, P.K., Balancing and cobalancing numbers, Ph.D. thesis, National Institute of Technology, Rourkela, India, 2009. (2009)
- Soydan, G., Németh, L., Szalay, L., On the diophantine equation , Arch. Math. (Brno) 54 (2008), 177–188. (2008) MR3847324
- Tchammou, E., Togbé, A., 10.1007/s10474-020-01043-4, Acta Math. Hungar. 162 (2) (2020), 647–676. (2020) MR4173320DOI10.1007/s10474-020-01043-4
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.