The symmetry reduction of variational integrals
Václav Tryhuk; Veronika Chrastinová
Mathematica Bohemica (2018)
- Volume: 143, Issue: 3, page 291-328
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topTryhuk, Václav, and Chrastinová, Veronika. "The symmetry reduction of variational integrals." Mathematica Bohemica 143.3 (2018): 291-328. <http://eudml.org/doc/294419>.
@article{Tryhuk2018,
abstract = {The Routh reduction of cyclic variables in the Lagrange function and the Jacobi-Maupertuis principle of constant energy systems are generalized. The article deals with one-dimensional variational integral subject to differential constraints, the Lagrange variational problem, that admits the Lie group of symmetries. Reduction to the orbit space is investigated in the absolute sense relieved of all accidental structures. In particular, the widest possible coordinate-free approach to the underdetermined systems of ordinary differential equations, Poincaré-Cartan forms, variations and extremals is involved for the preparation of the main task. The self-contained exposition differs from the common actual theories and rests only on the most fundamental tools of classical mathematical analysis, however, they are applied in infinite-dimensional spaces. The article may be of a certain interest for nonspecialists since all concepts of the calculus of variations undergo a deep reconstruction.},
author = {Tryhuk, Václav, Chrastinová, Veronika},
journal = {Mathematica Bohemica},
keywords = {Routh reduction; Lagrange variational problem; Poincaré-Cartan form; diffiety; standard basis; controllability; variation},
language = {eng},
number = {3},
pages = {291-328},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The symmetry reduction of variational integrals},
url = {http://eudml.org/doc/294419},
volume = {143},
year = {2018},
}
TY - JOUR
AU - Tryhuk, Václav
AU - Chrastinová, Veronika
TI - The symmetry reduction of variational integrals
JO - Mathematica Bohemica
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 143
IS - 3
SP - 291
EP - 328
AB - The Routh reduction of cyclic variables in the Lagrange function and the Jacobi-Maupertuis principle of constant energy systems are generalized. The article deals with one-dimensional variational integral subject to differential constraints, the Lagrange variational problem, that admits the Lie group of symmetries. Reduction to the orbit space is investigated in the absolute sense relieved of all accidental structures. In particular, the widest possible coordinate-free approach to the underdetermined systems of ordinary differential equations, Poincaré-Cartan forms, variations and extremals is involved for the preparation of the main task. The self-contained exposition differs from the common actual theories and rests only on the most fundamental tools of classical mathematical analysis, however, they are applied in infinite-dimensional spaces. The article may be of a certain interest for nonspecialists since all concepts of the calculus of variations undergo a deep reconstruction.
LA - eng
KW - Routh reduction; Lagrange variational problem; Poincaré-Cartan form; diffiety; standard basis; controllability; variation
UR - http://eudml.org/doc/294419
ER -
References
top- Adamec, L., 10.1142/S1402925111001180, J. Nonlinear Math. Phys. 18 (2011), 87-107. (2011) Zbl1217.49040MR2786936DOI10.1142/S1402925111001180
- Adamec, L., 10.1007/s10440-011-9654-2, Acta Appl. Math. 117 (2012), 115-134. (2012) Zbl1231.49038MR2886172DOI10.1007/s10440-011-9654-2
- Bażański, S. L., 10.4064/bc59-0-4, Classical and Quantum Integrability ({W}arsaw, 2001) J. Grabowski et al. Banach Cent. Publ. 59. Polish Academy of Sciences, Institute of Mathematics, Warsaw (2003), 99-111. (2003) Zbl1082.70008MR2003718DOI10.4064/bc59-0-4
- Capriotti, S., 10.1016/j.geomphys.2016.11.015, J. Geom. Phys. 114 (2017), 23-64. (2017) Zbl06688396MR3610032DOI10.1016/j.geomphys.2016.11.015
- Cartan, É., 10.24033/bsmf.938, S. M. F. Bull 42 (1914), 12-48 9999JFM99999 45.1294.04. (1914) MR1504722DOI10.24033/bsmf.938
- Cartan, É., Leçons sur les invariants intégraux, Hermann, Paris (1971). (1971) Zbl0212.12501MR0355764
- Chrastina, J., The Formal Theory of Differential Equations, Folia Facultatis Scientiarium Naturalium Universitatis Masarykianae Brunensis. Mathematica 6. Masaryk University, Brno (1998). (1998) Zbl0906.35002MR1656843
- Chrastinová, V., Tryhuk, V., 10.1515/ms-2015-0198, Math. Slovaca 66 (2016), 999-1018. (2016) Zbl06662105MR3567912DOI10.1515/ms-2015-0198
- Chrastinová, V., Tryhuk, V., 10.1515/ms-2016-0236, Math. Slovaca 66 (2016), 1459-1474. (2016) MR3619165DOI10.1515/ms-2016-0236
- Chrastinová, V., Tryhuk, V., 10.1515/ms-2017-0029, Math. Slovaca 67 (2017), 1011-1030. (2017) Zbl06760210MR3674124DOI10.1515/ms-2017-0029
- Crampin, M., Mestdag, T., 10.1063/1.2885077, J. Math. Phys. 49 (2008), Article ID 032901, 28 pages. (2008) Zbl1153.37396MR2406795DOI10.1063/1.2885077
- Fuller, A. T., Stability of Motion. A collection of early scientific papers by Routh, Clifford, Sturm and Bocher, Reprint. Taylor & Francis, London (1975). (1975) Zbl0312.34033MR0371578
- Griffiths, P. A., 10.1007/978-1-4615-8166-6, Progress in Mathematics 25. Birkhäuser, Boston (1983). (1983) Zbl0512.49003MR0684663DOI10.1007/978-1-4615-8166-6
- Hermann, R., 10.1007/BF00047568, Acta Appl. Math. 12 (1988), 35-78. (1988) Zbl0664.49018MR0962880DOI10.1007/BF00047568
- Hilbert, D., 10.1007/BF01456663, Math. Ann. 73 (1912), 95-108 9999JFM99999 43.0378.01. (1912) MR1511723DOI10.1007/BF01456663
- Krasil'shchik, I. S., Lychagin, V. V., Vinogradov, A. M., Geometry of Jet Spaces and Nonlinear Partial Differential Equations, Advanced Studies in Contemporary Mathematics 1. Gordon and Breach Science Publishers, New York (1986). (1986) Zbl0722.35001MR0861121
- Libermann, P., Marle, C.-M., 10.1007/978-94-009-3807-6, Mathematics and Its Applications 35. D. Reidel Publishing, Dordrecht (1987). (1987) Zbl0643.53002MR0882548DOI10.1007/978-94-009-3807-6
- Lie, S., Vorlesungen über Differentialgleichungen mit bekanten infinitesimale Transformationen, Teubner, Leipzig (1891),9999JFM99999 23.0351.01. (1891)
- Marsden, J. E., Ratiu, T. S., Scheurle, J., 10.1063/1.533317, J. Math. Phys. 41 (2000), 3379-3429. (2000) Zbl1044.37043MR1768627DOI10.1063/1.533317
- Mestdag, T., 10.1007/s00009-014-0505-z, Mediterr. J. Math. 13 (2016), 825-839. (2016) Zbl1338.53103MR3483865DOI10.1007/s00009-014-0505-z
- Tryhuk, V., Chrastinová, V., 10.1142/S140292511000091X, J. Nonlinear Math. Phys. 17 (2010), 293-310. (2010) Zbl1207.58004MR2733205DOI10.1142/S140292511000091X
- Tryhuk, V., Chrastinová, V., 10.1155/2014/482963, Abstr. Appl. Anal. (2014), Article ID 482963, 32 pages. (2014) MR3166619DOI10.1155/2014/482963
- Tryhuk, V., Chrastinová, V., Dlouhý, O., 10.1155/2011/919538, Abstr. Appl. Anal. 2011 (2011), Article ID 919538, 35 pages. (2011) Zbl1223.22018MR2771243DOI10.1155/2011/919538
- Vessiot, E., 10.1007/BF02418390, Acta Math. 28 (1904), 307-349. (1904) MR1555005DOI10.1007/BF02418390
- Vinogradov, A. M., 10.1090/mmono/204/01, Translations of Mathematical Monographs 204. AMS, Providence (2001). (2001) Zbl1152.58308MR1857908DOI10.1090/mmono/204/01
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.