Population dynamical behavior of a single-species nonlinear diffusion system with random perturbation
Li Zu; Daqing Jiang; Donal O'Regan
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 4, page 867-890
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZu, Li, Jiang, Daqing, and O'Regan, Donal. "Population dynamical behavior of a single-species nonlinear diffusion system with random perturbation." Czechoslovak Mathematical Journal 67.4 (2017): 867-890. <http://eudml.org/doc/294420>.
@article{Zu2017,
abstract = {We consider a single-species stochastic logistic model with the population's nonlinear diffusion between two patches. We prove the system is stochastically permanent and persistent in mean, and then we obtain sufficient conditions for stationary distribution and extinction. Finally, we illustrate our conclusions through numerical simulation.},
author = {Zu, Li, Jiang, Daqing, O'Regan, Donal},
journal = {Czechoslovak Mathematical Journal},
keywords = {stochastic permanence; persistent in mean; extinction; stationary distribution},
language = {eng},
number = {4},
pages = {867-890},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Population dynamical behavior of a single-species nonlinear diffusion system with random perturbation},
url = {http://eudml.org/doc/294420},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Zu, Li
AU - Jiang, Daqing
AU - O'Regan, Donal
TI - Population dynamical behavior of a single-species nonlinear diffusion system with random perturbation
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 4
SP - 867
EP - 890
AB - We consider a single-species stochastic logistic model with the population's nonlinear diffusion between two patches. We prove the system is stochastically permanent and persistent in mean, and then we obtain sufficient conditions for stationary distribution and extinction. Finally, we illustrate our conclusions through numerical simulation.
LA - eng
KW - stochastic permanence; persistent in mean; extinction; stationary distribution
UR - http://eudml.org/doc/294420
ER -
References
top- Allen, L. J. S., 10.1007/BF02462357, Bull. Math. Biol. 45 (1983), 209-227. (1983) Zbl0543.92020MR0707172DOI10.1007/BF02462357
- Cerrai, S., 10.1007/b80743, Lecture Notes in Mathematics 1762, Springer, Berlin (2001). (2001) Zbl0983.60004MR1840644DOI10.1007/b80743
- Chen, L. S., Chen, J., Nonlinear Biological Dynamical System, Science Press, Beijing (1993). (1993)
- Prato, G. Da, 10.1007/978-3-0348-7909-5, Advanced Courses in Mathematics-CRM Barcelona, Birkhäuser, Basel (2004). (2004) Zbl1066.60061MR2111320DOI10.1007/978-3-0348-7909-5
- Gard, T. C., 10.1002/asm.3150040209, Pure and Applied Mathematics 114, Marcel Dekker, New York (1988). (1988) Zbl0628.60064MR0917064DOI10.1002/asm.3150040209
- Higham, D. J., 10.1137/S0036144500378302, SIAM Rev. 43 (2001), 525-546. (2001) Zbl0979.65007MR1872387DOI10.1137/S0036144500378302
- Iked, N., Watanabe, S., Stochastic Differential Equations and Diffusion Processes, North-Holland Mathematical Library 24, North-Holland, Amsterdam; Kodansha, Tokyo (1989). (1989) Zbl0684.60040MR1011252
- Ji, C., Jiang, D., Liu, H., Yang, Q., 10.1155/2010/684926, Math. Probl. Eng. 2010 (2010), Article ID 684926, 18 pages. (2010) Zbl1204.34065MR2670476DOI10.1155/2010/684926
- Ji, C., Jiang, D., Shi, N., 10.1016/j.jmaa.2009.05.039, J. Math. Anal. Appl. 359 (2009), 482-498. (2009) Zbl1190.34064MR2546763DOI10.1016/j.jmaa.2009.05.039
- Jiang, D., Shi, N., 10.1016/j.jmaa.2004.08.027, J. Math. Anal. Appl. 303 (2005), 164-172. (2005) Zbl1076.34062MR2113874DOI10.1016/j.jmaa.2004.08.027
- Jiang, D., Shi, N., Li, X., 10.1016/j.jmaa.2007.08.014, J. Math. Anal. Appl. 340 (2008), 588-597. (2008) Zbl1140.60032MR2376180DOI10.1016/j.jmaa.2007.08.014
- Khas'minskiĭ, R., Stochastic Stability of Differential Equations, Monographs and Textbooks on Mechanics of Solids and Fluids. Mechanics: Analysis, 7. Sijthoff Noordhoff, USA; Alphen aan den Rijn, The Netherlands (1980). (1980) Zbl0441.60060MR0600653
- Li, X., Gray, A., Jiang, D., Mao, X., 10.1016/j.jmaa.2010.10.053, J. Math. Anal. Appl. 376 (2011), 11-28. (2011) Zbl1205.92058MR2745384DOI10.1016/j.jmaa.2010.10.053
- Liu, H., Yang, Q., Jiang, D., 10.1016/j.automatica.2012.02.010, Automatica 48 (2012), 820-825. (2012) Zbl1246.93117MR2912805DOI10.1016/j.automatica.2012.02.010
- Liu, M., Wang, K., 10.1016/j.jmaa.2010.09.058, J. Math. Anal. Appl. 375 (2011), 443-457. (2011) Zbl1214.34045MR2735535DOI10.1016/j.jmaa.2010.09.058
- Lu, Z., Takeuchi, Y., 10.1007/BF00160375, J. Math. Biol. 32 (1993), 67-77. (1993) Zbl0799.92014MR1256831DOI10.1007/BF00160375
- Mao, X., 10.1533/9780857099402, Ellis Horwood Series in Mathematics and Its Applications, Horwood Publishing, Chichester (1997). (1997) Zbl0892.60057MR1475218DOI10.1533/9780857099402
- Mao, X., Yuan, C., 10.1142/p473, Imperial College Press, London (2006). (2006) Zbl1126.60002MR2256095DOI10.1142/p473
- Mao, X., Yuan, C., Zou, J., 10.1016/j.jmaa.2004.09.027, J. Math. Anal. Appl. 304 (2005), 296-320. (2005) Zbl1062.92055MR2124664DOI10.1016/j.jmaa.2004.09.027
- Okubo, A., 10.1002/bimj.4710240311, Biomathematics, vol. 10, Springer, Berlin (1980). (1980) Zbl0422.92025MR0572962DOI10.1002/bimj.4710240311
- Strang, G., Linear Algebra and Its Applications, Academic Press (A Subsidiary of Harcourt Brace Jovanovich, Publishers), New York (1980). (1980) Zbl0463.15001MR0575349
- Zhu, C., Yin, G., 10.1137/060649343, SIAM J. Control Optim. 46 (2007), 1155-1179. (2007) Zbl1140.93045MR2346378DOI10.1137/060649343
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.