Population dynamical behavior of a single-species nonlinear diffusion system with random perturbation

Li Zu; Daqing Jiang; Donal O'Regan

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 4, page 867-890
  • ISSN: 0011-4642

Abstract

top
We consider a single-species stochastic logistic model with the population's nonlinear diffusion between two patches. We prove the system is stochastically permanent and persistent in mean, and then we obtain sufficient conditions for stationary distribution and extinction. Finally, we illustrate our conclusions through numerical simulation.

How to cite

top

Zu, Li, Jiang, Daqing, and O'Regan, Donal. "Population dynamical behavior of a single-species nonlinear diffusion system with random perturbation." Czechoslovak Mathematical Journal 67.4 (2017): 867-890. <http://eudml.org/doc/294420>.

@article{Zu2017,
abstract = {We consider a single-species stochastic logistic model with the population's nonlinear diffusion between two patches. We prove the system is stochastically permanent and persistent in mean, and then we obtain sufficient conditions for stationary distribution and extinction. Finally, we illustrate our conclusions through numerical simulation.},
author = {Zu, Li, Jiang, Daqing, O'Regan, Donal},
journal = {Czechoslovak Mathematical Journal},
keywords = {stochastic permanence; persistent in mean; extinction; stationary distribution},
language = {eng},
number = {4},
pages = {867-890},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Population dynamical behavior of a single-species nonlinear diffusion system with random perturbation},
url = {http://eudml.org/doc/294420},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Zu, Li
AU - Jiang, Daqing
AU - O'Regan, Donal
TI - Population dynamical behavior of a single-species nonlinear diffusion system with random perturbation
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 4
SP - 867
EP - 890
AB - We consider a single-species stochastic logistic model with the population's nonlinear diffusion between two patches. We prove the system is stochastically permanent and persistent in mean, and then we obtain sufficient conditions for stationary distribution and extinction. Finally, we illustrate our conclusions through numerical simulation.
LA - eng
KW - stochastic permanence; persistent in mean; extinction; stationary distribution
UR - http://eudml.org/doc/294420
ER -

References

top
  1. Allen, L. J. S., 10.1007/BF02462357, Bull. Math. Biol. 45 (1983), 209-227. (1983) Zbl0543.92020MR0707172DOI10.1007/BF02462357
  2. Cerrai, S., 10.1007/b80743, Lecture Notes in Mathematics 1762, Springer, Berlin (2001). (2001) Zbl0983.60004MR1840644DOI10.1007/b80743
  3. Chen, L. S., Chen, J., Nonlinear Biological Dynamical System, Science Press, Beijing (1993). (1993) 
  4. Prato, G. Da, 10.1007/978-3-0348-7909-5, Advanced Courses in Mathematics-CRM Barcelona, Birkhäuser, Basel (2004). (2004) Zbl1066.60061MR2111320DOI10.1007/978-3-0348-7909-5
  5. Gard, T. C., 10.1002/asm.3150040209, Pure and Applied Mathematics 114, Marcel Dekker, New York (1988). (1988) Zbl0628.60064MR0917064DOI10.1002/asm.3150040209
  6. Higham, D. J., 10.1137/S0036144500378302, SIAM Rev. 43 (2001), 525-546. (2001) Zbl0979.65007MR1872387DOI10.1137/S0036144500378302
  7. Iked, N., Watanabe, S., Stochastic Differential Equations and Diffusion Processes, North-Holland Mathematical Library 24, North-Holland, Amsterdam; Kodansha, Tokyo (1989). (1989) Zbl0684.60040MR1011252
  8. Ji, C., Jiang, D., Liu, H., Yang, Q., 10.1155/2010/684926, Math. Probl. Eng. 2010 (2010), Article ID 684926, 18 pages. (2010) Zbl1204.34065MR2670476DOI10.1155/2010/684926
  9. Ji, C., Jiang, D., Shi, N., 10.1016/j.jmaa.2009.05.039, J. Math. Anal. Appl. 359 (2009), 482-498. (2009) Zbl1190.34064MR2546763DOI10.1016/j.jmaa.2009.05.039
  10. Jiang, D., Shi, N., 10.1016/j.jmaa.2004.08.027, J. Math. Anal. Appl. 303 (2005), 164-172. (2005) Zbl1076.34062MR2113874DOI10.1016/j.jmaa.2004.08.027
  11. Jiang, D., Shi, N., Li, X., 10.1016/j.jmaa.2007.08.014, J. Math. Anal. Appl. 340 (2008), 588-597. (2008) Zbl1140.60032MR2376180DOI10.1016/j.jmaa.2007.08.014
  12. Khas'minskiĭ, R., Stochastic Stability of Differential Equations, Monographs and Textbooks on Mechanics of Solids and Fluids. Mechanics: Analysis, 7. Sijthoff Noordhoff, USA; Alphen aan den Rijn, The Netherlands (1980). (1980) Zbl0441.60060MR0600653
  13. Li, X., Gray, A., Jiang, D., Mao, X., 10.1016/j.jmaa.2010.10.053, J. Math. Anal. Appl. 376 (2011), 11-28. (2011) Zbl1205.92058MR2745384DOI10.1016/j.jmaa.2010.10.053
  14. Liu, H., Yang, Q., Jiang, D., 10.1016/j.automatica.2012.02.010, Automatica 48 (2012), 820-825. (2012) Zbl1246.93117MR2912805DOI10.1016/j.automatica.2012.02.010
  15. Liu, M., Wang, K., 10.1016/j.jmaa.2010.09.058, J. Math. Anal. Appl. 375 (2011), 443-457. (2011) Zbl1214.34045MR2735535DOI10.1016/j.jmaa.2010.09.058
  16. Lu, Z., Takeuchi, Y., 10.1007/BF00160375, J. Math. Biol. 32 (1993), 67-77. (1993) Zbl0799.92014MR1256831DOI10.1007/BF00160375
  17. Mao, X., 10.1533/9780857099402, Ellis Horwood Series in Mathematics and Its Applications, Horwood Publishing, Chichester (1997). (1997) Zbl0892.60057MR1475218DOI10.1533/9780857099402
  18. Mao, X., Yuan, C., 10.1142/p473, Imperial College Press, London (2006). (2006) Zbl1126.60002MR2256095DOI10.1142/p473
  19. Mao, X., Yuan, C., Zou, J., 10.1016/j.jmaa.2004.09.027, J. Math. Anal. Appl. 304 (2005), 296-320. (2005) Zbl1062.92055MR2124664DOI10.1016/j.jmaa.2004.09.027
  20. Okubo, A., 10.1002/bimj.4710240311, Biomathematics, vol. 10, Springer, Berlin (1980). (1980) Zbl0422.92025MR0572962DOI10.1002/bimj.4710240311
  21. Strang, G., Linear Algebra and Its Applications, Academic Press (A Subsidiary of Harcourt Brace Jovanovich, Publishers), New York (1980). (1980) Zbl0463.15001MR0575349
  22. Zhu, C., Yin, G., 10.1137/060649343, SIAM J. Control Optim. 46 (2007), 1155-1179. (2007) Zbl1140.93045MR2346378DOI10.1137/060649343

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.