Further results on the generalized cumulative entropy
Antonio Di Crescenzo; Abdolsaeed Toomaj
Kybernetika (2017)
- Volume: 53, Issue: 5, page 959-982
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topDi Crescenzo, Antonio, and Toomaj, Abdolsaeed. "Further results on the generalized cumulative entropy." Kybernetika 53.5 (2017): 959-982. <http://eudml.org/doc/294423>.
@article{DiCrescenzo2017,
abstract = {Recently, a new concept of entropy called generalized cumulative entropy of order $n$ was introduced and studied in the literature. It is related to the lower record values of a sequence of independent and identically distributed random variables and with the concept of reversed relevation transform. In this paper, we provide some further results for the generalized cumulative entropy such as stochastic orders, bounds and characterization results. Moreover, some characterization results are derived for the dynamic generalized cumulative entropy. Finally, it is shown that the empirical generalized cumulative entropy of an exponential distribution converges to normal distribution.},
author = {Di Crescenzo, Antonio, Toomaj, Abdolsaeed},
journal = {Kybernetika},
keywords = {generalized cumulative entropy; lower record values; reversed relevation transform; stochastic orders; parallel system},
language = {eng},
number = {5},
pages = {959-982},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Further results on the generalized cumulative entropy},
url = {http://eudml.org/doc/294423},
volume = {53},
year = {2017},
}
TY - JOUR
AU - Di Crescenzo, Antonio
AU - Toomaj, Abdolsaeed
TI - Further results on the generalized cumulative entropy
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 5
SP - 959
EP - 982
AB - Recently, a new concept of entropy called generalized cumulative entropy of order $n$ was introduced and studied in the literature. It is related to the lower record values of a sequence of independent and identically distributed random variables and with the concept of reversed relevation transform. In this paper, we provide some further results for the generalized cumulative entropy such as stochastic orders, bounds and characterization results. Moreover, some characterization results are derived for the dynamic generalized cumulative entropy. Finally, it is shown that the empirical generalized cumulative entropy of an exponential distribution converges to normal distribution.
LA - eng
KW - generalized cumulative entropy; lower record values; reversed relevation transform; stochastic orders; parallel system
UR - http://eudml.org/doc/294423
ER -
References
top- Arnold, B. C., Balakrishnan, N., Nagaraja, H. N., 10.1137/1.9780898719062, Wiley and Sons, New York 1992. MR1178934DOI10.1137/1.9780898719062
- Asadi, M., 10.1007/s00184-017-0620-5 DOI10.1007/s00184-017-0620-5
- Bagai, L., Kochar, S. C., 10.1080/03610928608829189, Comm. Stat. Theor. Meth. 15 (1986), 1377-1388. MR0836602DOI10.1080/03610928608829189
- Baratpour, S., 10.1080/03610920903324841, Comm. Stat. Theor. Meth. 39 (2010), 3645-3651. MR2747631DOI10.1080/03610920903324841
- Barlow, R. E., Proschan, F., Statistical Theory of Reliability and Life Testing., Holt, Rinehart and Winston, New York 1975. MR0438625
- Bartoszewicz, J., 10.1016/j.spl.2009.04.007, Stat. Prob. Lett. 79 (2009), 1690-1694. MR2547939DOI10.1016/j.spl.2009.04.007
- Baxter, L. A., 10.1002/nav.3800290212, Nav. Res. Logist. Q. 29 (1982), 323-330. MR0681055DOI10.1002/nav.3800290212
- Block, H. W., Savits, T. H., Singh, H., 10.1017/s0269964800005064, Probab. Engrg. Inform. Sci. 12 (1998), 69-90. MR1492141DOI10.1017/s0269964800005064
- Burkschat, M., Navarro, J., 10.1007/s00184-013-0481-5, Metrika 77 (2014), 965-994. MR3268630DOI10.1007/s00184-013-0481-5
- Chandler, K. N., The distribution and frequency of record values., J. Royal Stat. Soc. B 14 (1952), 220-228. MR0053463
- Chandra, N. K., Roy, D., 10.1017/s0269964801151077, Probab. Engrg. Inform. Sci. 15 (2001), 95-102. MR1825537DOI10.1017/s0269964801151077
- Crescenzo, A. Di, 10.1239/jap/1029349973, J. Appl. Prob. 36 (1999), 706-719. MR1737047DOI10.1239/jap/1029349973
- Crescenzo, A. Di, Longobardi, M., 10.1239/jap/1025131441, J. Appl. Prob. 39 (2002), 434-440. MR1908960DOI10.1239/jap/1025131441
- Crescenzo, A. Di, Longobardi, M., 10.1016/j.jspi.2009.05.038, J. Stat. Plan. Infer. 139 (2009), 4072-4087. MR2558351DOI10.1016/j.jspi.2009.05.038
- Crescenzo, A. Di, Martinucci, B., Mulero, J., 10.1017/s0269964815000376, Probab. Engrg. Inform. Sci. 30 (2016), 261-280. MR3478845DOI10.1017/s0269964815000376
- Crescenzo, A. Di, Toomaj, A., 10.1239/jap/1450802759, J. Appl. Prob. 52 (2015), 1156-1174. MR3439178DOI10.1239/jap/1450802759
- Hwang, J. S., Lin, G. D., 10.1090/s0002-9939-1984-0746093-4, Proc. Amer. Math. Soc. 91 (1984), 577-580. MR0746093DOI10.1090/s0002-9939-1984-0746093-4
- Kamps, U., 10.1016/s0169-7161(98)16012-1, In: Order Statistics: Theory and Methods. Handbook of Statistics 16 (N. Balakrishnan and C. R. Rao, eds.), Elsevier, Amsterdam 1998, pp. 291-311. MR1668749DOI10.1016/s0169-7161(98)16012-1
- Kapodistria, S., Psarrakos, G., 10.1017/s0269964811000271, Probab. Engrg. Inform. Sci. 26 (2012), 129-146. MR2880265DOI10.1017/s0269964811000271
- Kayal, S., 10.1017/s0269964816000218, Probab. Engrg. Inform. Sci. 30 (2016), 640-662. MR3569139DOI10.1017/s0269964816000218
- Kayal, S., 10.1007/s11009-017-9569-0, Meth. Comp. Appl. Prob., online first (2017). DOI10.1007/s11009-017-9569-0
- Klein, I., Mangold, B., Doll, M., 10.3390/e18070248, Entropy 18 (2016), 248. MR3550258DOI10.3390/e18070248
- Krakowski, M., 10.1051/ro/197307v201071, Rev. Française Automat. Informat. Recherche Opérationnelle 7 (1973), 107-120. MR0329175DOI10.1051/ro/197307v201071
- Li, Y., Yu, L., Hu, T., 10.1016/j.jspi.2011.11.023, J. Stat. Plan. Infer. 142 (2012), 1272-1278. MR2879771DOI10.1016/j.jspi.2011.11.023
- Muliere, P., Parmigiani, G., Polson, N., 10.1017/s0269964800003016, Probab. Engrg. Inform. Sci. 7 (1993), 413-420. DOI10.1017/s0269964800003016
- Navarro, J., Aguila, Y. del, Asadi, M., 10.1016/j.jspi.2009.07.015, J. Stat. Plan. Infer. 140 (2010), 310-322. MR2568141DOI10.1016/j.jspi.2009.07.015
- Navarro, J., Psarrakos, G., 10.1080/03610926.2015.1014111, Comm. Stat. Theor. Meth. 46 (2017), 1247-1260. MR3565622DOI10.1080/03610926.2015.1014111
- Navarro, J., Rubio, R., 10.1016/j.jspi.2011.12.008, J. Stat. Plann. Infer. 142 (2012), 1310-1319. MR2891483DOI10.1016/j.jspi.2011.12.008
- Navarro, J., Sunoj, S. M., Linu, M. N., 10.1016/j.spl.2011.05.016, Stat. Prob. Lett. 81 (2011), 1594-1598. MR2832917DOI10.1016/j.spl.2011.05.016
- Psarrakos, G., Navarro, J., 10.1007/s00184-012-0408-6, Metrika 76 (2013), 623-640. MR3078811DOI10.1007/s00184-012-0408-6
- Psarrakos, G., Toomaj, A., 10.1016/j.cam.2016.06.037, J. Comput. Appl. Math. 309 (2017), 186-199. MR3539777DOI10.1016/j.cam.2016.06.037
- Rao, M., 10.1007/s10959-005-7541-3, J. Theoret. Probab. 18 (2005), 967-981. MR2289942DOI10.1007/s10959-005-7541-3
- Rao, M., Chen, Y., Vemuri, B., Fei, W., 10.1109/tit.2004.828057, IEEE Trans. Inform. Theory 50 (2004), 1220-1228. MR2094878DOI10.1109/tit.2004.828057
- Rezaei, M., Gholizadeh, B., Izadkhah, S., 10.1080/03610926.2012.745559, Comm. Stat. Theor. Meth. 44 (2015), 300-308. MR3292595DOI10.1080/03610926.2012.745559
- Shaked, M., Shanthikumar, J. G., Stochastic Orders and Their Applications., Academic Press, San Diego 2007. MR1278322
- Shannon, C. E., 10.1002/j.1538-7305.1948.tb01338.x, Bell. Syst. Tech. J. 27 (1948), 379-423 and 623-656. Zbl1154.94303MR0026286DOI10.1002/j.1538-7305.1948.tb01338.x
- Sordo, M., Suarez-Llorens, A., 10.1016/j.insmatheco.2011.01.014, Insur. Math. Econ. 49 (2011), 11-17. MR2811889DOI10.1016/j.insmatheco.2011.01.014
- Toomaj, A., Crescenzo, A. Di, Doostparast, M., 10.1002/asmb.2277, Appl. Stoch. Mod. Bus. Ind., online first (2017). DOI10.1002/asmb.2277
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.