Further results on the generalized cumulative entropy

Antonio Di Crescenzo; Abdolsaeed Toomaj

Kybernetika (2017)

  • Volume: 53, Issue: 5, page 959-982
  • ISSN: 0023-5954

Abstract

top
Recently, a new concept of entropy called generalized cumulative entropy of order n was introduced and studied in the literature. It is related to the lower record values of a sequence of independent and identically distributed random variables and with the concept of reversed relevation transform. In this paper, we provide some further results for the generalized cumulative entropy such as stochastic orders, bounds and characterization results. Moreover, some characterization results are derived for the dynamic generalized cumulative entropy. Finally, it is shown that the empirical generalized cumulative entropy of an exponential distribution converges to normal distribution.

How to cite

top

Di Crescenzo, Antonio, and Toomaj, Abdolsaeed. "Further results on the generalized cumulative entropy." Kybernetika 53.5 (2017): 959-982. <http://eudml.org/doc/294423>.

@article{DiCrescenzo2017,
abstract = {Recently, a new concept of entropy called generalized cumulative entropy of order $n$ was introduced and studied in the literature. It is related to the lower record values of a sequence of independent and identically distributed random variables and with the concept of reversed relevation transform. In this paper, we provide some further results for the generalized cumulative entropy such as stochastic orders, bounds and characterization results. Moreover, some characterization results are derived for the dynamic generalized cumulative entropy. Finally, it is shown that the empirical generalized cumulative entropy of an exponential distribution converges to normal distribution.},
author = {Di Crescenzo, Antonio, Toomaj, Abdolsaeed},
journal = {Kybernetika},
keywords = {generalized cumulative entropy; lower record values; reversed relevation transform; stochastic orders; parallel system},
language = {eng},
number = {5},
pages = {959-982},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Further results on the generalized cumulative entropy},
url = {http://eudml.org/doc/294423},
volume = {53},
year = {2017},
}

TY - JOUR
AU - Di Crescenzo, Antonio
AU - Toomaj, Abdolsaeed
TI - Further results on the generalized cumulative entropy
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 5
SP - 959
EP - 982
AB - Recently, a new concept of entropy called generalized cumulative entropy of order $n$ was introduced and studied in the literature. It is related to the lower record values of a sequence of independent and identically distributed random variables and with the concept of reversed relevation transform. In this paper, we provide some further results for the generalized cumulative entropy such as stochastic orders, bounds and characterization results. Moreover, some characterization results are derived for the dynamic generalized cumulative entropy. Finally, it is shown that the empirical generalized cumulative entropy of an exponential distribution converges to normal distribution.
LA - eng
KW - generalized cumulative entropy; lower record values; reversed relevation transform; stochastic orders; parallel system
UR - http://eudml.org/doc/294423
ER -

References

top
  1. Arnold, B. C., Balakrishnan, N., Nagaraja, H. N., 10.1137/1.9780898719062, Wiley and Sons, New York 1992. MR1178934DOI10.1137/1.9780898719062
  2. Asadi, M., 10.1007/s00184-017-0620-5 DOI10.1007/s00184-017-0620-5
  3. Bagai, L., Kochar, S. C., 10.1080/03610928608829189, Comm. Stat. Theor. Meth. 15 (1986), 1377-1388. MR0836602DOI10.1080/03610928608829189
  4. Baratpour, S., 10.1080/03610920903324841, Comm. Stat. Theor. Meth. 39 (2010), 3645-3651. MR2747631DOI10.1080/03610920903324841
  5. Barlow, R. E., Proschan, F., Statistical Theory of Reliability and Life Testing., Holt, Rinehart and Winston, New York 1975. MR0438625
  6. Bartoszewicz, J., 10.1016/j.spl.2009.04.007, Stat. Prob. Lett. 79 (2009), 1690-1694. MR2547939DOI10.1016/j.spl.2009.04.007
  7. Baxter, L. A., 10.1002/nav.3800290212, Nav. Res. Logist. Q. 29 (1982), 323-330. MR0681055DOI10.1002/nav.3800290212
  8. Block, H. W., Savits, T. H., Singh, H., 10.1017/s0269964800005064, Probab. Engrg. Inform. Sci. 12 (1998), 69-90. MR1492141DOI10.1017/s0269964800005064
  9. Burkschat, M., Navarro, J., 10.1007/s00184-013-0481-5, Metrika 77 (2014), 965-994. MR3268630DOI10.1007/s00184-013-0481-5
  10. Chandler, K. N., The distribution and frequency of record values., J. Royal Stat. Soc. B 14 (1952), 220-228. MR0053463
  11. Chandra, N. K., Roy, D., 10.1017/s0269964801151077, Probab. Engrg. Inform. Sci. 15 (2001), 95-102. MR1825537DOI10.1017/s0269964801151077
  12. Crescenzo, A. Di, 10.1239/jap/1029349973, J. Appl. Prob. 36 (1999), 706-719. MR1737047DOI10.1239/jap/1029349973
  13. Crescenzo, A. Di, Longobardi, M., 10.1239/jap/1025131441, J. Appl. Prob. 39 (2002), 434-440. MR1908960DOI10.1239/jap/1025131441
  14. Crescenzo, A. Di, Longobardi, M., 10.1016/j.jspi.2009.05.038, J. Stat. Plan. Infer. 139 (2009), 4072-4087. MR2558351DOI10.1016/j.jspi.2009.05.038
  15. Crescenzo, A. Di, Martinucci, B., Mulero, J., 10.1017/s0269964815000376, Probab. Engrg. Inform. Sci. 30 (2016), 261-280. MR3478845DOI10.1017/s0269964815000376
  16. Crescenzo, A. Di, Toomaj, A., 10.1239/jap/1450802759, J. Appl. Prob. 52 (2015), 1156-1174. MR3439178DOI10.1239/jap/1450802759
  17. Hwang, J. S., Lin, G. D., 10.1090/s0002-9939-1984-0746093-4, Proc. Amer. Math. Soc. 91 (1984), 577-580. MR0746093DOI10.1090/s0002-9939-1984-0746093-4
  18. Kamps, U., 10.1016/s0169-7161(98)16012-1, In: Order Statistics: Theory and Methods. Handbook of Statistics 16 (N. Balakrishnan and C. R. Rao, eds.), Elsevier, Amsterdam 1998, pp. 291-311. MR1668749DOI10.1016/s0169-7161(98)16012-1
  19. Kapodistria, S., Psarrakos, G., 10.1017/s0269964811000271, Probab. Engrg. Inform. Sci. 26 (2012), 129-146. MR2880265DOI10.1017/s0269964811000271
  20. Kayal, S., 10.1017/s0269964816000218, Probab. Engrg. Inform. Sci. 30 (2016), 640-662. MR3569139DOI10.1017/s0269964816000218
  21. Kayal, S., 10.1007/s11009-017-9569-0, Meth. Comp. Appl. Prob., online first (2017). DOI10.1007/s11009-017-9569-0
  22. Klein, I., Mangold, B., Doll, M., 10.3390/e18070248, Entropy 18 (2016), 248. MR3550258DOI10.3390/e18070248
  23. Krakowski, M., 10.1051/ro/197307v201071, Rev. Française Automat. Informat. Recherche Opérationnelle 7 (1973), 107-120. MR0329175DOI10.1051/ro/197307v201071
  24. Li, Y., Yu, L., Hu, T., 10.1016/j.jspi.2011.11.023, J. Stat. Plan. Infer. 142 (2012), 1272-1278. MR2879771DOI10.1016/j.jspi.2011.11.023
  25. Muliere, P., Parmigiani, G., Polson, N., 10.1017/s0269964800003016, Probab. Engrg. Inform. Sci. 7 (1993), 413-420. DOI10.1017/s0269964800003016
  26. Navarro, J., Aguila, Y. del, Asadi, M., 10.1016/j.jspi.2009.07.015, J. Stat. Plan. Infer. 140 (2010), 310-322. MR2568141DOI10.1016/j.jspi.2009.07.015
  27. Navarro, J., Psarrakos, G., 10.1080/03610926.2015.1014111, Comm. Stat. Theor. Meth. 46 (2017), 1247-1260. MR3565622DOI10.1080/03610926.2015.1014111
  28. Navarro, J., Rubio, R., 10.1016/j.jspi.2011.12.008, J. Stat. Plann. Infer. 142 (2012), 1310-1319. MR2891483DOI10.1016/j.jspi.2011.12.008
  29. Navarro, J., Sunoj, S. M., Linu, M. N., 10.1016/j.spl.2011.05.016, Stat. Prob. Lett. 81 (2011), 1594-1598. MR2832917DOI10.1016/j.spl.2011.05.016
  30. Psarrakos, G., Navarro, J., 10.1007/s00184-012-0408-6, Metrika 76 (2013), 623-640. MR3078811DOI10.1007/s00184-012-0408-6
  31. Psarrakos, G., Toomaj, A., 10.1016/j.cam.2016.06.037, J. Comput. Appl. Math. 309 (2017), 186-199. MR3539777DOI10.1016/j.cam.2016.06.037
  32. Rao, M., 10.1007/s10959-005-7541-3, J. Theoret. Probab. 18 (2005), 967-981. MR2289942DOI10.1007/s10959-005-7541-3
  33. Rao, M., Chen, Y., Vemuri, B., Fei, W., 10.1109/tit.2004.828057, IEEE Trans. Inform. Theory 50 (2004), 1220-1228. MR2094878DOI10.1109/tit.2004.828057
  34. Rezaei, M., Gholizadeh, B., Izadkhah, S., 10.1080/03610926.2012.745559, Comm. Stat. Theor. Meth. 44 (2015), 300-308. MR3292595DOI10.1080/03610926.2012.745559
  35. Shaked, M., Shanthikumar, J. G., Stochastic Orders and Their Applications., Academic Press, San Diego 2007. MR1278322
  36. Shannon, C. E., 10.1002/j.1538-7305.1948.tb01338.x, Bell. Syst. Tech. J. 27 (1948), 379-423 and 623-656. Zbl1154.94303MR0026286DOI10.1002/j.1538-7305.1948.tb01338.x
  37. Sordo, M., Suarez-Llorens, A., 10.1016/j.insmatheco.2011.01.014, Insur. Math. Econ. 49 (2011), 11-17. MR2811889DOI10.1016/j.insmatheco.2011.01.014
  38. Toomaj, A., Crescenzo, A. Di, Doostparast, M., 10.1002/asmb.2277, Appl. Stoch. Mod. Bus. Ind., online first (2017). DOI10.1002/asmb.2277

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.