On the endomorphism ring and Cohen-Macaulayness of local cohomology defined by a pair of ideals
Thiago H. Freitas; Victor H. Jorge Pérez
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 2, page 453-470
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topFreitas, Thiago H., and Jorge Pérez, Victor H.. "On the endomorphism ring and Cohen-Macaulayness of local cohomology defined by a pair of ideals." Czechoslovak Mathematical Journal 69.2 (2019): 453-470. <http://eudml.org/doc/294425>.
@article{Freitas2019,
abstract = {Let $\mathfrak \{a\}$, $I$, $J$ be ideals of a Noetherian local ring $(R,\mathfrak \{m\},k)$. Let $M$ and $N$ be finitely generated $R$-modules. We give a generalized version of the Duality Theorem for Cohen-Macaulay rings using local cohomology defined by a pair of ideals. We study the behavior of the endomorphism rings of $H^t_\{I,J\}(M)$ and $D(H^t_\{I,J\}(M))$, where $t$ is the smallest integer such that the local cohomology with respect to a pair of ideals is nonzero and $D(-):= \{\rm Hom\}_R(-,E_R(k))$ is the Matlis dual functor. We show that if $R$ is a $d$-dimensional complete Cohen-Macaulay ring and $H^i_\{I,J\}(R)=0$ for all $i\ne t$, the natural homomorphism $R\rightarrow \{\rm Hom\}_R(H^t_\{I,J\}(K_R), H^t_\{I,J\}(K_R))$ is an isomorphism, where $K_R$ denotes the canonical module of $R$. Also, we discuss the depth and Cohen-Macaulayness of the Matlis dual of the top local cohomology modules with respect to a pair of ideals.},
author = {Freitas, Thiago H., Jorge Pérez, Victor H.},
journal = {Czechoslovak Mathematical Journal},
keywords = {local cohomology; Matlis duality; endomorphism ring},
language = {eng},
number = {2},
pages = {453-470},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the endomorphism ring and Cohen-Macaulayness of local cohomology defined by a pair of ideals},
url = {http://eudml.org/doc/294425},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Freitas, Thiago H.
AU - Jorge Pérez, Victor H.
TI - On the endomorphism ring and Cohen-Macaulayness of local cohomology defined by a pair of ideals
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 2
SP - 453
EP - 470
AB - Let $\mathfrak {a}$, $I$, $J$ be ideals of a Noetherian local ring $(R,\mathfrak {m},k)$. Let $M$ and $N$ be finitely generated $R$-modules. We give a generalized version of the Duality Theorem for Cohen-Macaulay rings using local cohomology defined by a pair of ideals. We study the behavior of the endomorphism rings of $H^t_{I,J}(M)$ and $D(H^t_{I,J}(M))$, where $t$ is the smallest integer such that the local cohomology with respect to a pair of ideals is nonzero and $D(-):= {\rm Hom}_R(-,E_R(k))$ is the Matlis dual functor. We show that if $R$ is a $d$-dimensional complete Cohen-Macaulay ring and $H^i_{I,J}(R)=0$ for all $i\ne t$, the natural homomorphism $R\rightarrow {\rm Hom}_R(H^t_{I,J}(K_R), H^t_{I,J}(K_R))$ is an isomorphism, where $K_R$ denotes the canonical module of $R$. Also, we discuss the depth and Cohen-Macaulayness of the Matlis dual of the top local cohomology modules with respect to a pair of ideals.
LA - eng
KW - local cohomology; Matlis duality; endomorphism ring
UR - http://eudml.org/doc/294425
ER -
References
top- Aghapournahr, M., Ahmadi-Amoli, K., Sadeghi, M. Y., 10.22044/JAS.2015.482, J. Algebr. Syst. 3 (2015), 1-10. (2015) MR3534204DOI10.22044/JAS.2015.482
- Ahmadi-Amoli, K., Sadeghi, M. Y., On the local cohomology modules defined by a pair of ideals and Serre subcategory, J. Math. Ext. 7 (2013), 47-62. (2013) Zbl1327.13056MR3248761
- Brodmann, M. P., Sharp, R. Y., 10.1017/CBO9780511629204, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge (1998). (1998) Zbl0903.13006MR1613627DOI10.1017/CBO9780511629204
- Bruns, W., Herzog, J., 10.1017/CBO9780511608681, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge (1998). (1998) Zbl0909.13005MR1251956DOI10.1017/CBO9780511608681
- Chu, L., 10.1090/S0002-9939-2010-10471-9, Proc. Am. Math. Soc. 139 (2011), 777-782. (2011) Zbl1210.13018MR2745630DOI10.1090/S0002-9939-2010-10471-9
- Chu, L.-Z., Wang, Q., 10.1215/kjm/1248983036, J. Math. Kyoto Univ. 49 (2009), 193-200. (2009) Zbl1174.13024MR2531134DOI10.1215/kjm/1248983036
- Eghbali, M., Schenzel, P., 10.1080/00927872.2011.588982, Commun. Algebra 40 (2012), 4295-4305. (2012) Zbl1273.13027MR2982939DOI10.1080/00927872.2011.588982
- Freitas, T. H., Pérez, V. H. Jorge, 10.1216/JCA-2016-8-3-337, J. Commut. Algebra 8 (2016), 337-366. (2016) Zbl1348.13026MR3546002DOI10.1216/JCA-2016-8-3-337
- Freitas, T. H., Pérez, V. H. Jorge, 10.1007/s13366-016-0322-6, Beitr. Algebra Geom. 58 (2017), 319-340. (2017) Zbl1387.13040MR3651656DOI10.1007/s13366-016-0322-6
- Hartshorne, R., 10.1007/BFb0073971, Lecture Notes in Mathematics 41, Springer, Berlin (1967). (1967) Zbl0185.49202MR224620DOI10.1007/BFb0073971
- Hellus, M., Schenzel, P., 10.1016/j.jalgebra.2008.09.006, J. Algebra 320 (2008), 3733-3748. (2008) Zbl1157.13012MR2457720DOI10.1016/j.jalgebra.2008.09.006
- Hellus, M., Stückrad, J., 10.1090/S0002-9939-08-09240-X, Proc. Am. Math. Soc. 136 (2008), 2333-2341. (2008) Zbl1152.13011MR2390499DOI10.1090/S0002-9939-08-09240-X
- Hochster, M., Huneke, C., 10.1090/conm/159, Commutative Algebra: Syzygies, Multiplicities, and Birational Algebra W. J. Heinzer et al. Contemp. Math. 159, American Mathematical Society, Providence (1994), 197-208. (1994) Zbl0809.13003MR1266184DOI10.1090/conm/159
- Iyengar, S. B., Leuschke, G. J., Leykin, A., Miller, C., Miller, E., Singh, A. K., Walther, U., 10.1090/gsm/087, Graduate Studies in Mathematics 87, American Mathematical Society, Providence (2007). (2007) Zbl1129.13001MR2355715DOI10.1090/gsm/087
- Khashyarmanesh, K., 10.4153/CMB-2010-072-1, Can. Math. Bull. 53 (2010), 667-673. (2010) Zbl1203.13019MR2761689DOI10.4153/CMB-2010-072-1
- Mafi, A., 10.1007/s10114-009-7418-y, Acta Math. Sin., Engl. Ser. 25 (2009), 917-922. (2009) Zbl1183.13025MR2511535DOI10.1007/s10114-009-7418-y
- Mahmood, W., On endomorphism ring of local cohomology modules, Available at https://arxiv.org/abs/1308.2584.
- Payrovi, S., Parsa, M. Lotfi, Artinianness of local cohomology modules defined by a pair of ideals, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), 877-883. (2012) Zbl1253.13018MR2960891
- Payrovi, S., Parsa, M. Lotfi, 10.1080/00927872.2011.631206, Commun. Algebra 41 (2013), 627-637. (2013) Zbl1263.13016MR3011786DOI10.1080/00927872.2011.631206
- Talemi, A. Pour Eshmanan, Tehranian, A., 10.7508/ijmsi.2014.02.002, Iran. J. Math. Sci. Inform. 9 (2014), 7-13. (2014) Zbl1314.13035MR3330480DOI10.7508/ijmsi.2014.02.002
- Sadeghi, M. Y., Eghbali, M., Ahmadi-Amoli, K., 10.1142/S0219498819501792, (to appear) in J. Algebra Appl. DOI10.1142/S0219498819501792
- Schenzel, P., 10.1016/j.jalgebra.2003.12.016, J. Algebra 275 (2004), 751-770. (2004) Zbl1103.13014MR2052635DOI10.1016/j.jalgebra.2003.12.016
- Schenzel, P., 10.1090/S0002-9939-08-09676-7, Proc. Am. Math. Soc. 137 (2009), 1315-1322. (2009) Zbl1163.13010MR2465654DOI10.1090/S0002-9939-08-09676-7
- Schenzel, P., 10.1007/s00013-010-0149-6, Arch. Math. 95 (2010), 115-123. (2010) Zbl1200.13028MR2674247DOI10.1007/s00013-010-0149-6
- Schenzel, P., 10.1016/j.jalgebra.2011.07.014, J. Algebra 344 (2011), 229-245. (2011) Zbl1236.13016MR2831938DOI10.1016/j.jalgebra.2011.07.014
- Strooker, J. R., 10.1017/CBO9780511629242, London Mathematical Society Lecture Note Series 145, Cambridge University Press, Cambridge (1990). (1990) Zbl0786.13008MR1074178DOI10.1017/CBO9780511629242
- Takahashi, R., Yoshino, Y., Yoshizawa, T., 10.1016/j.jpaa.2008.09.008, J. Pure Appl. Algebra 213 (2009), 582-600. (2009) Zbl1160.13013MR2483839DOI10.1016/j.jpaa.2008.09.008
- Tehranian, A., Talemi, A. Pour Eshmanan, 10.1142/S1005386713000606, Algebra Colloq. 20 (2013), 637-642. (2013) Zbl1282.13038MR3116792DOI10.1142/S1005386713000606
- Tehranian, A., Talemi, A. Pour Eshmanan, 10.1142/S1005386714000546, Algebra Colloq. 21 (2014), 597-604. (2014) Zbl1304.13037MR3266511DOI10.1142/S1005386714000546
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.