Displaying similar documents to “On the endomorphism ring and Cohen-Macaulayness of local cohomology defined by a pair of ideals”

S -depth on Z D -modules and local cohomology

Morteza Lotfi Parsa (2021)

Czechoslovak Mathematical Journal

Similarity:

Let R be a Noetherian ring, and I and J be two ideals of R . Let S be a Serre subcategory of the category of R -modules satisfying the condition C I and M be a Z D -module. As a generalization of the S - depth ( I , M ) and depth ( I , J , M ) , the S - depth of ( I , J ) on M is defined as S - depth ( I , J , M ) = inf { S - depth ( 𝔞 , M ) : 𝔞 W ˜ ( I , J ) } , and some properties of this concept are investigated. The relations between S - depth ( I , J , M ) and H I , J i ( M ) are studied, and it is proved that S - depth ( I , J , M ) = inf { i : H I , J i ( M ) S } , where S is a Serre subcategory closed under taking injective hulls. Some conditions are provided that local cohomology...

Cofiniteness and finiteness of local cohomology modules over regular local rings

Jafar A'zami, Naser Pourreza (2017)

Czechoslovak Mathematical Journal

Similarity:

Let ( R , 𝔪 ) be a commutative Noetherian regular local ring of dimension d and I be a proper ideal of R such that mAss R ( R / I ) = Assh R ( I ) . It is shown that the R -module H I ht ( I ) ( R ) is I -cofinite if and only if cd ( I , R ) = ht ( I ) . Also we present a sufficient condition under which this condition the R -module H I i ( R ) is finitely generated if and only if it vanishes.

Matlis dual of local cohomology modules

Batoul Naal, Kazem Khashyarmanesh (2020)

Czechoslovak Mathematical Journal

Similarity:

Let ( R , 𝔪 ) be a commutative Noetherian local ring, 𝔞 be an ideal of R and M a finitely generated R -module such that 𝔞 M M and cd ( 𝔞 , M ) - grade ( 𝔞 , M ) 1 , where cd ( 𝔞 , M ) is the cohomological dimension of M with respect to 𝔞 and grade ( 𝔞 , M ) is the M -grade of 𝔞 . Let D ( - ) : = Hom R ( - , E ) be the Matlis dual functor, where E : = E ( R / 𝔪 ) is the injective hull of the residue field R / 𝔪 . We show that there exists the following long exact sequence 0 H 𝔞 n - 2 ( D ( H 𝔞 n - 1 ( M ) ) ) H 𝔞 n ( D ( H 𝔞 n ( M ) ) ) D ( M ) H 𝔞 n - 1 ( D ( H 𝔞 n - 1 ( M ) ) ) H 𝔞 n + 1 ( D ( H 𝔞 n ( M ) ) ) H 𝔞 n ( D ( H ( x 1 , ... , x n - 1 ) n - 1 ( M ) ) ) H 𝔞 n ( D ( H ( n - 1 M ) ) ) ... , where n : = cd ( 𝔞 , M ) is a non-negative integer, x 1 , ... , x n - 1 is a regular sequence in 𝔞 on M and, for an R -module L , H 𝔞 i ( L ) is the i th local cohomology module...

Remarks on L B I -subalgebras of C ( X )

Mehdi Parsinia (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let A ( X ) denote a subalgebra of C ( X ) which is closed under local bounded inversion, briefly, an L B I -subalgebra. These subalgebras were first introduced and studied in Redlin L., Watson S., Structure spaces for rings of continuous functions with applications to realcompactifications, Fund. Math. 152 (1997), 151–163. By characterizing maximal ideals of A ( X ) , we generalize the notion of z A β -ideals, which was first introduced in Acharyya S.K., De D., An interesting class of ideals in subalgebras of C ( X ) ...

On the minimaxness and coatomicness of local cohomology modules

Marzieh Hatamkhani, Hajar Roshan-Shekalgourabi (2022)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative Noetherian ring, I an ideal of R and M an R -module. We wish to investigate the relation between vanishing, finiteness, Artinianness, minimaxness and 𝒞 -minimaxness of local cohomology modules. We show that if M is a minimax R -module, then the local-global principle is valid for minimaxness of local cohomology modules. This implies that if n is a nonnegative integer such that ( H I i ( M ) ) 𝔪 is a minimax R 𝔪 -module for all 𝔪 Max ( R ) and for all i < n , then the set Ass R ( H I n ( M ) ) is finite. Also, if H I i ( M ) is...

Local cohomology, cofiniteness and homological functors of modules

Kamal Bahmanpour (2022)

Czechoslovak Mathematical Journal

Similarity:

Let I be an ideal of a commutative Noetherian ring R . It is shown that the R -modules H I j ( M ) are I -cofinite for all finitely generated R -modules M and all j 0 if and only if the R -modules Ext R i ( N , H I j ( M ) ) and Tor i R ( N , H I j ( M ) ) are I -cofinite for all finitely generated R -modules M , N and all integers i , j 0 .

Cominimaxness of local cohomology modules

Moharram Aghapournahr (2019)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative Noetherian ring, I an ideal of R . Let t 0 be an integer and M an R -module such that Ext R i ( R / I , M ) is minimax for all i t + 1 . We prove that if H I i ( M ) is FD 1 (or weakly Laskerian) for all i < t , then the R -modules H I i ( M ) are I -cominimax for all i < t and Ext R i ( R / I , H I t ( M ) ) is minimax for i = 0 , 1 . Let N be a finitely generated R -module. We prove that Ext R j ( N , H I i ( M ) ) and Tor j R ( N , H I i ( M ) ) are I -cominimax for all i and j whenever M is minimax and H I i ( M ) is FD 1 (or weakly Laskerian) for all i .

On atomic ideals in some factor rings of C ( X , )

Alireza Olfati (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A nonzero R -module M is atomic if for each two nonzero elements a , b in M , both cyclic submodules R a and R b have nonzero isomorphic submodules. In this article it is shown that for an infinite P -space X , the factor rings C ( X , ) / C F ( X , ) and C c ( X ) / C F ( X ) have no atomic ideals. This fact generalizes a result published in paper by A. Mozaffarikhah, E. Momtahan, A. R. Olfati and S. Safaeeyan (2020), which says that for an infinite set X , the factor ring X / ( X ) has no atomic ideal. Another result is that for each infinite...

Generalization of the S -Noetherian concept

Abdelamir Dabbabi, Ali Benhissi (2023)

Archivum Mathematicum

Similarity:

Let A be a commutative ring and 𝒮 a multiplicative system of ideals. We say that A is 𝒮 -Noetherian, if for each ideal Q of A , there exist I 𝒮 and a finitely generated ideal F Q such that I Q F . In this paper, we study the transfer of this property to the polynomial ring and Nagata’s idealization.

The cleanness of (symbolic) powers of Stanley-Reisner ideals

Somayeh Bandari, Ali Soleyman Jahan (2017)

Czechoslovak Mathematical Journal

Similarity:

Let Δ be a pure simplicial complex on the vertex set [ n ] = { 1 , ... , n } and I Δ its Stanley-Reisner ideal in the polynomial ring S = K [ x 1 , ... , x n ] . We show that Δ is a matroid (complete intersection) if and only if S / I Δ ( m ) ( S / I Δ m ) is clean for all m and this is equivalent to saying that S / I Δ ( m ) ( S / I Δ m , respectively) is Cohen-Macaulay for all m . By this result, we show that there exists a monomial ideal I with (pretty) cleanness property while S / I m or S / I ( m ) is not (pretty) clean for all integer m 3 . If dim ( Δ ) = 1 , we also prove that S / I Δ ( 2 ) ( S / I Δ 2 ) is clean if and only...

Invariants, torsion indices and oriented cohomology of complete flags

Baptiste Calmès, Viktor Petrov, Kirill Zainoulline (2013)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let  G be a split semisimple linear algebraic group over a field and let  T be a split maximal torus of  G . Let  𝗁 be an oriented cohomology (algebraic cobordism, connective K -theory, Chow groups, Grothendieck’s K 0 , etc.) with formal group law F . We construct a ring from F and the characters of  T , that we call a formal group ring, and we define a characteristic ring morphism c from this formal group ring to  𝗁 ( G / B ) where G / B is the variety of Borel subgroups of  G . Our main result says that when the...

Strongly ( 𝒯 , n ) -coherent rings, ( 𝒯 , n ) -semihereditary rings and ( 𝒯 , n ) -regular rings

Zhanmin Zhu (2020)

Czechoslovak Mathematical Journal

Similarity:

Let 𝒯 be a weak torsion class of left R -modules and n a positive integer. A left R -module M is called ( 𝒯 , n ) -injective if Ext R n ( C , M ) = 0 for each ( 𝒯 , n + 1 ) -presented left R -module C ; a right R -module M is called ( 𝒯 , n ) -flat if Tor n R ( M , C ) = 0 for each ( 𝒯 , n + 1 ) -presented left R -module C ; a left R -module M is called ( 𝒯 , n ) -projective if Ext R n ( M , N ) = 0 for each ( 𝒯 , n ) -injective left R -module N ; the ring R is called strongly ( 𝒯 , n ) -coherent if whenever 0 K P C 0 is exact, where C is ( 𝒯 , n + 1 ) -presented and P is finitely generated projective, then K is ( 𝒯 , n ) -projective; the ring R is called...

P-injective group rings

Liang Shen (2020)

Czechoslovak Mathematical Journal

Similarity:

A ring R is called right P-injective if every homomorphism from a principal right ideal of R to R R can be extended to a homomorphism from R R to R R . Let R be a ring and G a group. Based on a result of Nicholson and Yousif, we prove that the group ring RG is right P-injective if and only if (a) R is right P-injective; (b) G is locally finite; and (c) for any finite subgroup H of G and any principal right ideal I of RH , if f Hom R ( I R , R R ) , then there exists g Hom R ( RH R , R R ) such that g | I = f . Similarly, we also obtain equivalent...

The linear syzygy graph of a monomial ideal and linear resolutions

Erfan Manouchehri, Ali Soleyman Jahan (2021)

Czechoslovak Mathematical Journal

Similarity:

For each squarefree monomial ideal I S = k [ x 1 , ... , x n ] , we associate a simple finite graph G I by using the first linear syzygies of I . The nodes of G I are the generators of I , and two vertices u i and u j are adjacent if there exist variables x , y such that x u i = y u j . In the cases, where G I is a cycle or a tree, we show that I has a linear resolution if and only if I has linear quotients and if and only if I is variable-decomposable. In addition, with the same assumption on G I , we characterize all squarefree monomial ideals...