A comparison of deterministic and Bayesian inverse with application in micromechanics

Radim Blaheta; Michal Béreš; Simona Domesová; Pengzhi Pan

Applications of Mathematics (2018)

  • Volume: 63, Issue: 6, page 665-686
  • ISSN: 0862-7940

Abstract

top
The paper deals with formulation and numerical solution of problems of identification of material parameters for continuum mechanics problems in domains with heterogeneous microstructure. Due to a restricted number of measurements of quantities related to physical processes, we assume additional information about the microstructure geometry provided by CT scan or similar analysis. The inverse problems use output least squares cost functionals with values obtained from averages of state problem quantities over parts of the boundary and Tikhonov regularization. To include uncertainties in observed values, Bayesian inversion is also considered in order to obtain a statistical description of unknown material parameters from sampling provided by the Metropolis-Hastings algorithm accelerated by using the stochastic Galerkin method. The connection between Bayesian inversion and Tikhonov regularization and advantages of each approach are also discussed.

How to cite

top

Blaheta, Radim, et al. "A comparison of deterministic and Bayesian inverse with application in micromechanics." Applications of Mathematics 63.6 (2018): 665-686. <http://eudml.org/doc/294428>.

@article{Blaheta2018,
abstract = {The paper deals with formulation and numerical solution of problems of identification of material parameters for continuum mechanics problems in domains with heterogeneous microstructure. Due to a restricted number of measurements of quantities related to physical processes, we assume additional information about the microstructure geometry provided by CT scan or similar analysis. The inverse problems use output least squares cost functionals with values obtained from averages of state problem quantities over parts of the boundary and Tikhonov regularization. To include uncertainties in observed values, Bayesian inversion is also considered in order to obtain a statistical description of unknown material parameters from sampling provided by the Metropolis-Hastings algorithm accelerated by using the stochastic Galerkin method. The connection between Bayesian inversion and Tikhonov regularization and advantages of each approach are also discussed.},
author = {Blaheta, Radim, Béreš, Michal, Domesová, Simona, Pan, Pengzhi},
journal = {Applications of Mathematics},
keywords = {inverse problems; Bayesian approach; stochastic Galerkin method},
language = {eng},
number = {6},
pages = {665-686},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A comparison of deterministic and Bayesian inverse with application in micromechanics},
url = {http://eudml.org/doc/294428},
volume = {63},
year = {2018},
}

TY - JOUR
AU - Blaheta, Radim
AU - Béreš, Michal
AU - Domesová, Simona
AU - Pan, Pengzhi
TI - A comparison of deterministic and Bayesian inverse with application in micromechanics
JO - Applications of Mathematics
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 6
SP - 665
EP - 686
AB - The paper deals with formulation and numerical solution of problems of identification of material parameters for continuum mechanics problems in domains with heterogeneous microstructure. Due to a restricted number of measurements of quantities related to physical processes, we assume additional information about the microstructure geometry provided by CT scan or similar analysis. The inverse problems use output least squares cost functionals with values obtained from averages of state problem quantities over parts of the boundary and Tikhonov regularization. To include uncertainties in observed values, Bayesian inversion is also considered in order to obtain a statistical description of unknown material parameters from sampling provided by the Metropolis-Hastings algorithm accelerated by using the stochastic Galerkin method. The connection between Bayesian inversion and Tikhonov regularization and advantages of each approach are also discussed.
LA - eng
KW - inverse problems; Bayesian approach; stochastic Galerkin method
UR - http://eudml.org/doc/294428
ER -

References

top
  1. Babuška, I., Tempone, R., Zouraris, G. E., 10.1137/S0036142902418680, SIAM J. Numer. Anal. 42 (2004), 800-825. (2004) Zbl1080.65003MR2084236DOI10.1137/S0036142902418680
  2. Béreš, M., Domesová, S., 10.15598/aeee.v15i2.2280, Adv. Electr. Electron. Eng. 15 (2017), 267-279. (2017) DOI10.15598/aeee.v15i2.2280
  3. Blaheta, R., Béreš, M., Domesová, S., 10.1201/b21348-47, Proc. Int. Conf. Applied Mathematics in Engineering and Reliability CRC Press (2016), 281-289. (2016) DOI10.1201/b21348-47
  4. Blaheta, R., Kohut, R., Kolcun, A., Souček, K., Staš, L., Vavro, L., 10.1016/j.ijrmms.2015.03.012, Int. J. Rock Mechanics and Mining Sciences 77 (2015), 77-88. (2015) DOI10.1016/j.ijrmms.2015.03.012
  5. Boffi, D., Brezzi, F., Fortin, M., 10.1007/978-3-642-36519-5, Springer Series in Computational Mathematics 44, Springer, Berlin (2013). (2013) Zbl1277.65092MR3097958DOI10.1007/978-3-642-36519-5
  6. Carey, G. F., Chow, S. S., Seager, M. K., 10.1016/0045-7825(85)90085-4, Comput. Methods Appl. Mech. Eng. 50 (1985), 107-120. (1985) Zbl0546.73057MR0802335DOI10.1016/0045-7825(85)90085-4
  7. Christen, J. A., Fox, C., 10.1198/106186005X76983, J. Comput. Graph. Statist. 14 (2005), 795-810. (2005) MR2211367DOI10.1198/106186005X76983
  8. Domesová, S., Béreš, M., 10.15598/aeee.v15i2.2236, Adv. Electr. Electron. Eng. 15 (2017), 258-266. (2017) DOI10.15598/aeee.v15i2.2236
  9. Domesová, S., Béreš, M., 10.1007/978-3-319-97136-0_15, Int. Conf. High Performance Computing in Science and Engineering, 2017 T. Kozubek et al. Springer International Publishing, Cham (2018), 203-216. (2018) DOI10.1007/978-3-319-97136-0_15
  10. Foreman-Mackey, D., Hogg, D. W., Lang, D., Goodman, J., 10.1086/670067, Publ. Astron. Soc. Pacific 125 (2013), 306-312. (2013) DOI10.1086/670067
  11. Gatica, G. N., 10.1007/978-3-319-03695-3, SpringerBriefs in Mathematics, Springer, Cham (2014). (2014) Zbl1293.65152MR3157367DOI10.1007/978-3-319-03695-3
  12. Haslinger, J., Blaheta, R., Hrtus, R., 10.1016/j.cam.2016.06.023, J. Comput. Appl. Math. 310 (2017), 129-142. (2017) Zbl1347.49052MR3544595DOI10.1016/j.cam.2016.06.023
  13. Lord, G. J., Powell, C. E., Shardlow, T., 10.1017/CBO9781139017329, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge (2014). (2014) Zbl1327.60011MR3308418DOI10.1017/CBO9781139017329
  14. Mathworks, Matlab Optimization Toolbox User's Guide, Available at https://uk.mathworks.com/products/optimization.html (2017). (2017) 
  15. Powell, C. E., Silvester, D., Simoncini, V., 10.1137/15M1032399, SIAM J. Sci. Comput. 39 (2017), A141--A163. (2017) Zbl1381.35257MR3594329DOI10.1137/15M1032399
  16. Pultarová, I., 10.1016/j.camwa.2016.01.006, Comput. Math. Appl. 71 (2016), 949-964. (2016) MR3461271DOI10.1016/j.camwa.2016.01.006
  17. Robert, C. P., 10.1007/0-387-71599-1, Springer Texts in Statistics, Springer, New York (2007). (2007) Zbl1129.62003MR2723361DOI10.1007/0-387-71599-1
  18. Robert, C. P., Casella, G., 10.1007/978-1-4757-4145-2, Springer Texts in Statistics, Springer, New York (2004). (2004) Zbl1096.62003MR2080278DOI10.1007/978-1-4757-4145-2
  19. Sokal, A., 10.1007/978-1-4899-0319-8_6, Functional Integration: Basics and Applications, 1996 C. DeWitt-Morette et al. NATO ASI Series. Series B. Physics. 361, Plenum Press, New York (1997), 131-192. (1997) Zbl0890.65006MR1477456DOI10.1007/978-1-4899-0319-8_6
  20. Stuart, A. M., 10.1017/S0962492910000061, Acta Numerica 19 (2010) 451-559. Zbl1242.65142MR2652785DOI10.1017/S0962492910000061
  21. Thompson, M. B., A comparison of methods for computing autocorrelation time, Available at https://arxiv.org/abs/1011.0175 (2010). (2010) 
  22. Vogel, C. R., 10.1137/1.9780898717570, Frontiers in Applied Mathematics 23, Society for Industrial and Applied Mathematics, Philadelphia (2002). (2002) Zbl1008.65103MR1928831DOI10.1137/1.9780898717570
  23. Xiu, D., 10.2307/j.ctv7h0skv, Princeton University Press, Princeton (2010). (2010) Zbl1210.65002MR2723020DOI10.2307/j.ctv7h0skv

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.