A comparison of deterministic and Bayesian inverse with application in micromechanics
Radim Blaheta; Michal Béreš; Simona Domesová; Pengzhi Pan
Applications of Mathematics (2018)
- Volume: 63, Issue: 6, page 665-686
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topBlaheta, Radim, et al. "A comparison of deterministic and Bayesian inverse with application in micromechanics." Applications of Mathematics 63.6 (2018): 665-686. <http://eudml.org/doc/294428>.
@article{Blaheta2018,
abstract = {The paper deals with formulation and numerical solution of problems of identification of material parameters for continuum mechanics problems in domains with heterogeneous microstructure. Due to a restricted number of measurements of quantities related to physical processes, we assume additional information about the microstructure geometry provided by CT scan or similar analysis. The inverse problems use output least squares cost functionals with values obtained from averages of state problem quantities over parts of the boundary and Tikhonov regularization. To include uncertainties in observed values, Bayesian inversion is also considered in order to obtain a statistical description of unknown material parameters from sampling provided by the Metropolis-Hastings algorithm accelerated by using the stochastic Galerkin method. The connection between Bayesian inversion and Tikhonov regularization and advantages of each approach are also discussed.},
author = {Blaheta, Radim, Béreš, Michal, Domesová, Simona, Pan, Pengzhi},
journal = {Applications of Mathematics},
keywords = {inverse problems; Bayesian approach; stochastic Galerkin method},
language = {eng},
number = {6},
pages = {665-686},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A comparison of deterministic and Bayesian inverse with application in micromechanics},
url = {http://eudml.org/doc/294428},
volume = {63},
year = {2018},
}
TY - JOUR
AU - Blaheta, Radim
AU - Béreš, Michal
AU - Domesová, Simona
AU - Pan, Pengzhi
TI - A comparison of deterministic and Bayesian inverse with application in micromechanics
JO - Applications of Mathematics
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 6
SP - 665
EP - 686
AB - The paper deals with formulation and numerical solution of problems of identification of material parameters for continuum mechanics problems in domains with heterogeneous microstructure. Due to a restricted number of measurements of quantities related to physical processes, we assume additional information about the microstructure geometry provided by CT scan or similar analysis. The inverse problems use output least squares cost functionals with values obtained from averages of state problem quantities over parts of the boundary and Tikhonov regularization. To include uncertainties in observed values, Bayesian inversion is also considered in order to obtain a statistical description of unknown material parameters from sampling provided by the Metropolis-Hastings algorithm accelerated by using the stochastic Galerkin method. The connection between Bayesian inversion and Tikhonov regularization and advantages of each approach are also discussed.
LA - eng
KW - inverse problems; Bayesian approach; stochastic Galerkin method
UR - http://eudml.org/doc/294428
ER -
References
top- Babuška, I., Tempone, R., Zouraris, G. E., 10.1137/S0036142902418680, SIAM J. Numer. Anal. 42 (2004), 800-825. (2004) Zbl1080.65003MR2084236DOI10.1137/S0036142902418680
- Béreš, M., Domesová, S., 10.15598/aeee.v15i2.2280, Adv. Electr. Electron. Eng. 15 (2017), 267-279. (2017) DOI10.15598/aeee.v15i2.2280
- Blaheta, R., Béreš, M., Domesová, S., 10.1201/b21348-47, Proc. Int. Conf. Applied Mathematics in Engineering and Reliability CRC Press (2016), 281-289. (2016) DOI10.1201/b21348-47
- Blaheta, R., Kohut, R., Kolcun, A., Souček, K., Staš, L., Vavro, L., 10.1016/j.ijrmms.2015.03.012, Int. J. Rock Mechanics and Mining Sciences 77 (2015), 77-88. (2015) DOI10.1016/j.ijrmms.2015.03.012
- Boffi, D., Brezzi, F., Fortin, M., 10.1007/978-3-642-36519-5, Springer Series in Computational Mathematics 44, Springer, Berlin (2013). (2013) Zbl1277.65092MR3097958DOI10.1007/978-3-642-36519-5
- Carey, G. F., Chow, S. S., Seager, M. K., 10.1016/0045-7825(85)90085-4, Comput. Methods Appl. Mech. Eng. 50 (1985), 107-120. (1985) Zbl0546.73057MR0802335DOI10.1016/0045-7825(85)90085-4
- Christen, J. A., Fox, C., 10.1198/106186005X76983, J. Comput. Graph. Statist. 14 (2005), 795-810. (2005) MR2211367DOI10.1198/106186005X76983
- Domesová, S., Béreš, M., 10.15598/aeee.v15i2.2236, Adv. Electr. Electron. Eng. 15 (2017), 258-266. (2017) DOI10.15598/aeee.v15i2.2236
- Domesová, S., Béreš, M., 10.1007/978-3-319-97136-0_15, Int. Conf. High Performance Computing in Science and Engineering, 2017 T. Kozubek et al. Springer International Publishing, Cham (2018), 203-216. (2018) DOI10.1007/978-3-319-97136-0_15
- Foreman-Mackey, D., Hogg, D. W., Lang, D., Goodman, J., 10.1086/670067, Publ. Astron. Soc. Pacific 125 (2013), 306-312. (2013) DOI10.1086/670067
- Gatica, G. N., 10.1007/978-3-319-03695-3, SpringerBriefs in Mathematics, Springer, Cham (2014). (2014) Zbl1293.65152MR3157367DOI10.1007/978-3-319-03695-3
- Haslinger, J., Blaheta, R., Hrtus, R., 10.1016/j.cam.2016.06.023, J. Comput. Appl. Math. 310 (2017), 129-142. (2017) Zbl1347.49052MR3544595DOI10.1016/j.cam.2016.06.023
- Lord, G. J., Powell, C. E., Shardlow, T., 10.1017/CBO9781139017329, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge (2014). (2014) Zbl1327.60011MR3308418DOI10.1017/CBO9781139017329
- Mathworks, Matlab Optimization Toolbox User's Guide, Available at https://uk.mathworks.com/products/optimization.html (2017). (2017)
- Powell, C. E., Silvester, D., Simoncini, V., 10.1137/15M1032399, SIAM J. Sci. Comput. 39 (2017), A141--A163. (2017) Zbl1381.35257MR3594329DOI10.1137/15M1032399
- Pultarová, I., 10.1016/j.camwa.2016.01.006, Comput. Math. Appl. 71 (2016), 949-964. (2016) MR3461271DOI10.1016/j.camwa.2016.01.006
- Robert, C. P., 10.1007/0-387-71599-1, Springer Texts in Statistics, Springer, New York (2007). (2007) Zbl1129.62003MR2723361DOI10.1007/0-387-71599-1
- Robert, C. P., Casella, G., 10.1007/978-1-4757-4145-2, Springer Texts in Statistics, Springer, New York (2004). (2004) Zbl1096.62003MR2080278DOI10.1007/978-1-4757-4145-2
- Sokal, A., 10.1007/978-1-4899-0319-8_6, Functional Integration: Basics and Applications, 1996 C. DeWitt-Morette et al. NATO ASI Series. Series B. Physics. 361, Plenum Press, New York (1997), 131-192. (1997) Zbl0890.65006MR1477456DOI10.1007/978-1-4899-0319-8_6
- Stuart, A. M., 10.1017/S0962492910000061, Acta Numerica 19 (2010) 451-559. Zbl1242.65142MR2652785DOI10.1017/S0962492910000061
- Thompson, M. B., A comparison of methods for computing autocorrelation time, Available at https://arxiv.org/abs/1011.0175 (2010). (2010)
- Vogel, C. R., 10.1137/1.9780898717570, Frontiers in Applied Mathematics 23, Society for Industrial and Applied Mathematics, Philadelphia (2002). (2002) Zbl1008.65103MR1928831DOI10.1137/1.9780898717570
- Xiu, D., 10.2307/j.ctv7h0skv, Princeton University Press, Princeton (2010). (2010) Zbl1210.65002MR2723020DOI10.2307/j.ctv7h0skv
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.