On the nilpotent residuals of all subalgebras of Lie algebras

Wei Meng; Hailou Yao

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 3, page 817-828
  • ISSN: 0011-4642

Abstract

top
Let 𝒩 denote the class of nilpotent Lie algebras. For any finite-dimensional Lie algebra L over an arbitrary field 𝔽 , there exists a smallest ideal I of L such that L / I 𝒩 . This uniquely determined ideal of L is called the nilpotent residual of L and is denoted by L 𝒩 . In this paper, we define the subalgebra S ( L ) = H L I L ( H 𝒩 ) . Set S 0 ( L ) = 0 . Define S i + 1 ( L ) / S i ( L ) = S ( L / S i ( L ) ) for i 1 . By S ( L ) denote the terminal term of the ascending series. It is proved that L = S ( L ) if and only if L 𝒩 is nilpotent. In addition, we investigate the basic properties of a Lie algebra L with S ( L ) = L .

How to cite

top

Meng, Wei, and Yao, Hailou. "On the nilpotent residuals of all subalgebras of Lie algebras." Czechoslovak Mathematical Journal 68.3 (2018): 817-828. <http://eudml.org/doc/294446>.

@article{Meng2018,
abstract = {Let $\mathcal \{N\}$ denote the class of nilpotent Lie algebras. For any finite-dimensional Lie algebra $L$ over an arbitrary field $\mathbb \{F\}$, there exists a smallest ideal $I$ of $L$ such that $L/I\in \mathcal \{N\}$. This uniquely determined ideal of $L$ is called the nilpotent residual of $L$ and is denoted by $L^\{\mathcal \{N\}\}$. In this paper, we define the subalgebra $S(L)=\bigcap \nolimits _\{H\le L\}I_L(H^\{\mathcal \{N\}\})$. Set $S_0(L) = 0$. Define $S_\{i+1\}(L)/S_i (L) =S(L/S_i (L))$ for $i \ge 1$. By $S_\{\infty \}(L)$ denote the terminal term of the ascending series. It is proved that $L= S_\{\infty \}(L)$ if and only if $L^\{\mathcal \{N\}\}$ is nilpotent. In addition, we investigate the basic properties of a Lie algebra $L$ with $S(L)=L$.},
author = {Meng, Wei, Yao, Hailou},
journal = {Czechoslovak Mathematical Journal},
keywords = {solvable Lie algebra; nilpotent residual; Frattini ideal},
language = {eng},
number = {3},
pages = {817-828},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the nilpotent residuals of all subalgebras of Lie algebras},
url = {http://eudml.org/doc/294446},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Meng, Wei
AU - Yao, Hailou
TI - On the nilpotent residuals of all subalgebras of Lie algebras
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 3
SP - 817
EP - 828
AB - Let $\mathcal {N}$ denote the class of nilpotent Lie algebras. For any finite-dimensional Lie algebra $L$ over an arbitrary field $\mathbb {F}$, there exists a smallest ideal $I$ of $L$ such that $L/I\in \mathcal {N}$. This uniquely determined ideal of $L$ is called the nilpotent residual of $L$ and is denoted by $L^{\mathcal {N}}$. In this paper, we define the subalgebra $S(L)=\bigcap \nolimits _{H\le L}I_L(H^{\mathcal {N}})$. Set $S_0(L) = 0$. Define $S_{i+1}(L)/S_i (L) =S(L/S_i (L))$ for $i \ge 1$. By $S_{\infty }(L)$ denote the terminal term of the ascending series. It is proved that $L= S_{\infty }(L)$ if and only if $L^{\mathcal {N}}$ is nilpotent. In addition, we investigate the basic properties of a Lie algebra $L$ with $S(L)=L$.
LA - eng
KW - solvable Lie algebra; nilpotent residual; Frattini ideal
UR - http://eudml.org/doc/294446
ER -

References

top
  1. Barnes, D. W., 10.1007/BF01193118, Math. Z. 79 (1962), 237-238. (1962) Zbl0122.04001MR0150177DOI10.1007/BF01193118
  2. Barnes, D. W., 10.1007/BF01109799, Math. Z. 101 (1967), 343-349. (1967) Zbl0166.04102MR0220784DOI10.1007/BF01109799
  3. Barnes, D. W., 10.1007/BF01177868, Math. Z. 133 (1973), 277-283. (1973) Zbl0253.17003MR0330244DOI10.1007/BF01177868
  4. Barnes, D. W., Gastineau-Hills, H. M., 10.1007/BF01115083, Math. Z. 106 (1968), 343-354. (1968) Zbl0164.03701MR0232807DOI10.1007/BF01115083
  5. Barnes, D. W., Newell, M. L., 10.1007/BF01109856, Math. Z. 115 (1970), 179-187. (1970) Zbl0197.03003MR0266969DOI10.1007/BF01109856
  6. Chen, L., Meng, D., 10.1142/S1005386709000479, Algebra Colloq. 16 (2009), 503-516. (2009) Zbl1235.17009MR2536774DOI10.1142/S1005386709000479
  7. Gong, L., Guo, X., 10.1142/S1005386713000321, Algebra Colloq. 20 (2013), 349-360. (2013) Zbl1281.20020MR3043320DOI10.1142/S1005386713000321
  8. Gong, L., Guo, X., 10.1007/s40840-016-0338-y, Bull. Malays. Math. Sci. Soc. (2) 39 (2016), 957-970. (2016) Zbl06625446MR3515061DOI10.1007/s40840-016-0338-y
  9. Humphreys, J. E., 10.1007/978-1-4612-6398-2, Graduate Texts in Mathematics 9, Springer, New York (1972). (1972) Zbl0254.17004MR0323842DOI10.1007/978-1-4612-6398-2
  10. Marshall, E. I., 10.1112/jlms/s1-42.1.416, J. Lond. Math. Soc. 42 (1967), 416-422. (1967) Zbl0166.04101MR0217132DOI10.1112/jlms/s1-42.1.416
  11. Schwarck, F., Die Frattini-Algebra einer Lie-Algebra, Dissertation, Universität Kiel, Kiel German (1963). (1963) 
  12. Shen, Z., Shi, W., Qian, G., 10.1016/j.jalgebra.2011.11.018, J. Algebra 352 (2012), 290-298. (2012) Zbl1255.20019MR2862187DOI10.1016/j.jalgebra.2011.11.018
  13. Stitzinger, E. L., 10.1112/jlms/2.Part_3.429, J. Lond. Math. Soc., II. Ser. 2 (1970), 429-438. (1970) Zbl0201.03603MR0263885DOI10.1112/jlms/2.Part_3.429
  14. Stitzinger, E. L., 10.1007/BF01110802, Math. Z. 124 (1982), 237-249. (1982) Zbl0215.38601MR0297829DOI10.1007/BF01110802
  15. Su, N., Wang, Y., 10.1016/j.jalgebra.2013.06.037, J. Algebra 392 (2013), 185-198. (2013) Zbl1312.20015MR3085030DOI10.1016/j.jalgebra.2013.06.037
  16. Towers, D. A., 10.1112/plms/s3-27.3.440, Proc. Lond. Math. Soc., III. Ser. 27 (1973), 440-462. (1973) Zbl0267.17004MR0427393DOI10.1112/plms/s3-27.3.440
  17. Towers, D. A., 10.1112/jlms/s2-7.2.295, J. Lond. Math. Soc., II. Ser. 7 (1973), 295-302. (1973) Zbl0267.17006MR0376782DOI10.1112/jlms/s2-7.2.295
  18. Towers, D. A., 10.1080/00927870902829023, Commun. Algebra 37 (2009), 4366-4373. (2009) Zbl1239.17006MR2588856DOI10.1080/00927870902829023
  19. Towers, D. A., 10.1017/S0013091509001035, Proc. Edinb. Math. Soc., II. Ser. 54 (2011), 531-542. (2011) Zbl1228.17007MR2794670DOI10.1017/S0013091509001035
  20. Towers, D. A., 10.1090/S0002-9939-2012-11244-4, Proc. Am. Math. Soc. 140 (2012), 3823-3830. (2012) Zbl1317.17010MR2944723DOI10.1090/S0002-9939-2012-11244-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.