On the nilpotent residuals of all subalgebras of Lie algebras
Czechoslovak Mathematical Journal (2018)
- Volume: 68, Issue: 3, page 817-828
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMeng, Wei, and Yao, Hailou. "On the nilpotent residuals of all subalgebras of Lie algebras." Czechoslovak Mathematical Journal 68.3 (2018): 817-828. <http://eudml.org/doc/294446>.
@article{Meng2018,
abstract = {Let $\mathcal \{N\}$ denote the class of nilpotent Lie algebras. For any finite-dimensional Lie algebra $L$ over an arbitrary field $\mathbb \{F\}$, there exists a smallest ideal $I$ of $L$ such that $L/I\in \mathcal \{N\}$. This uniquely determined ideal of $L$ is called the nilpotent residual of $L$ and is denoted by $L^\{\mathcal \{N\}\}$. In this paper, we define the subalgebra $S(L)=\bigcap \nolimits _\{H\le L\}I_L(H^\{\mathcal \{N\}\})$. Set $S_0(L) = 0$. Define $S_\{i+1\}(L)/S_i (L) =S(L/S_i (L))$ for $i \ge 1$. By $S_\{\infty \}(L)$ denote the terminal term of the ascending series. It is proved that $L= S_\{\infty \}(L)$ if and only if $L^\{\mathcal \{N\}\}$ is nilpotent. In addition, we investigate the basic properties of a Lie algebra $L$ with $S(L)=L$.},
author = {Meng, Wei, Yao, Hailou},
journal = {Czechoslovak Mathematical Journal},
keywords = {solvable Lie algebra; nilpotent residual; Frattini ideal},
language = {eng},
number = {3},
pages = {817-828},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the nilpotent residuals of all subalgebras of Lie algebras},
url = {http://eudml.org/doc/294446},
volume = {68},
year = {2018},
}
TY - JOUR
AU - Meng, Wei
AU - Yao, Hailou
TI - On the nilpotent residuals of all subalgebras of Lie algebras
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 3
SP - 817
EP - 828
AB - Let $\mathcal {N}$ denote the class of nilpotent Lie algebras. For any finite-dimensional Lie algebra $L$ over an arbitrary field $\mathbb {F}$, there exists a smallest ideal $I$ of $L$ such that $L/I\in \mathcal {N}$. This uniquely determined ideal of $L$ is called the nilpotent residual of $L$ and is denoted by $L^{\mathcal {N}}$. In this paper, we define the subalgebra $S(L)=\bigcap \nolimits _{H\le L}I_L(H^{\mathcal {N}})$. Set $S_0(L) = 0$. Define $S_{i+1}(L)/S_i (L) =S(L/S_i (L))$ for $i \ge 1$. By $S_{\infty }(L)$ denote the terminal term of the ascending series. It is proved that $L= S_{\infty }(L)$ if and only if $L^{\mathcal {N}}$ is nilpotent. In addition, we investigate the basic properties of a Lie algebra $L$ with $S(L)=L$.
LA - eng
KW - solvable Lie algebra; nilpotent residual; Frattini ideal
UR - http://eudml.org/doc/294446
ER -
References
top- Barnes, D. W., 10.1007/BF01193118, Math. Z. 79 (1962), 237-238. (1962) Zbl0122.04001MR0150177DOI10.1007/BF01193118
- Barnes, D. W., 10.1007/BF01109799, Math. Z. 101 (1967), 343-349. (1967) Zbl0166.04102MR0220784DOI10.1007/BF01109799
- Barnes, D. W., 10.1007/BF01177868, Math. Z. 133 (1973), 277-283. (1973) Zbl0253.17003MR0330244DOI10.1007/BF01177868
- Barnes, D. W., Gastineau-Hills, H. M., 10.1007/BF01115083, Math. Z. 106 (1968), 343-354. (1968) Zbl0164.03701MR0232807DOI10.1007/BF01115083
- Barnes, D. W., Newell, M. L., 10.1007/BF01109856, Math. Z. 115 (1970), 179-187. (1970) Zbl0197.03003MR0266969DOI10.1007/BF01109856
- Chen, L., Meng, D., 10.1142/S1005386709000479, Algebra Colloq. 16 (2009), 503-516. (2009) Zbl1235.17009MR2536774DOI10.1142/S1005386709000479
- Gong, L., Guo, X., 10.1142/S1005386713000321, Algebra Colloq. 20 (2013), 349-360. (2013) Zbl1281.20020MR3043320DOI10.1142/S1005386713000321
- Gong, L., Guo, X., 10.1007/s40840-016-0338-y, Bull. Malays. Math. Sci. Soc. (2) 39 (2016), 957-970. (2016) Zbl06625446MR3515061DOI10.1007/s40840-016-0338-y
- Humphreys, J. E., 10.1007/978-1-4612-6398-2, Graduate Texts in Mathematics 9, Springer, New York (1972). (1972) Zbl0254.17004MR0323842DOI10.1007/978-1-4612-6398-2
- Marshall, E. I., 10.1112/jlms/s1-42.1.416, J. Lond. Math. Soc. 42 (1967), 416-422. (1967) Zbl0166.04101MR0217132DOI10.1112/jlms/s1-42.1.416
- Schwarck, F., Die Frattini-Algebra einer Lie-Algebra, Dissertation, Universität Kiel, Kiel German (1963). (1963)
- Shen, Z., Shi, W., Qian, G., 10.1016/j.jalgebra.2011.11.018, J. Algebra 352 (2012), 290-298. (2012) Zbl1255.20019MR2862187DOI10.1016/j.jalgebra.2011.11.018
- Stitzinger, E. L., 10.1112/jlms/2.Part_3.429, J. Lond. Math. Soc., II. Ser. 2 (1970), 429-438. (1970) Zbl0201.03603MR0263885DOI10.1112/jlms/2.Part_3.429
- Stitzinger, E. L., 10.1007/BF01110802, Math. Z. 124 (1982), 237-249. (1982) Zbl0215.38601MR0297829DOI10.1007/BF01110802
- Su, N., Wang, Y., 10.1016/j.jalgebra.2013.06.037, J. Algebra 392 (2013), 185-198. (2013) Zbl1312.20015MR3085030DOI10.1016/j.jalgebra.2013.06.037
- Towers, D. A., 10.1112/plms/s3-27.3.440, Proc. Lond. Math. Soc., III. Ser. 27 (1973), 440-462. (1973) Zbl0267.17004MR0427393DOI10.1112/plms/s3-27.3.440
- Towers, D. A., 10.1112/jlms/s2-7.2.295, J. Lond. Math. Soc., II. Ser. 7 (1973), 295-302. (1973) Zbl0267.17006MR0376782DOI10.1112/jlms/s2-7.2.295
- Towers, D. A., 10.1080/00927870902829023, Commun. Algebra 37 (2009), 4366-4373. (2009) Zbl1239.17006MR2588856DOI10.1080/00927870902829023
- Towers, D. A., 10.1017/S0013091509001035, Proc. Edinb. Math. Soc., II. Ser. 54 (2011), 531-542. (2011) Zbl1228.17007MR2794670DOI10.1017/S0013091509001035
- Towers, D. A., 10.1090/S0002-9939-2012-11244-4, Proc. Am. Math. Soc. 140 (2012), 3823-3830. (2012) Zbl1317.17010MR2944723DOI10.1090/S0002-9939-2012-11244-4
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.