Nilpotent approximation of a trident snake robot controlling distribution
Jaroslav Hrdina; Radomil Matoušek; Aleš Návrat; Petr Vašík
Kybernetika (2017)
- Volume: 53, Issue: 6, page 1118-1130
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topHrdina, Jaroslav, et al. "Nilpotent approximation of a trident snake robot controlling distribution." Kybernetika 53.6 (2017): 1118-1130. <http://eudml.org/doc/294447>.
@article{Hrdina2017,
abstract = {We construct a privileged system of coordinates with respect to the controlling distribution of a trident snake robot and, furthermore, we construct a nilpotent approximation with respect to the given filtration. Note that all constructions are local in the neighbourhood of a particular point. We compare the motions corresponding to the Lie bracket of the original controlling vector fields and their nilpotent approximation.},
author = {Hrdina, Jaroslav, Matoušek, Radomil, Návrat, Aleš, Vašík, Petr},
journal = {Kybernetika},
keywords = {robotic snake; local control; nilpotent approximation},
language = {eng},
number = {6},
pages = {1118-1130},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Nilpotent approximation of a trident snake robot controlling distribution},
url = {http://eudml.org/doc/294447},
volume = {53},
year = {2017},
}
TY - JOUR
AU - Hrdina, Jaroslav
AU - Matoušek, Radomil
AU - Návrat, Aleš
AU - Vašík, Petr
TI - Nilpotent approximation of a trident snake robot controlling distribution
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 6
SP - 1118
EP - 1130
AB - We construct a privileged system of coordinates with respect to the controlling distribution of a trident snake robot and, furthermore, we construct a nilpotent approximation with respect to the given filtration. Note that all constructions are local in the neighbourhood of a particular point. We compare the motions corresponding to the Lie bracket of the original controlling vector fields and their nilpotent approximation.
LA - eng
KW - robotic snake; local control; nilpotent approximation
UR - http://eudml.org/doc/294447
ER -
References
top- Bao-Li, Ma, 10.1155/2011/697309, J. Robotics 2007 (2007), 1-8. DOI10.1155/2011/697309
- Cai, Q., Huang, T., Sachkov, Y. L., Yang, X., 10.1007/s10883-015-9295-2, J. Dynamical Control Systems 22 (2016), 465-483. MR3517612DOI10.1007/s10883-015-9295-2
- Hermes, H., 10.1137/0324045, Siam J. Control Optim. 24 (1986), 731-736. MR0846379DOI10.1137/0324045
- J.Hrdina, Local controllability of trident snake robot based on sub-Riemannian extremals., Note di Matematica 37 (2017), 93-102. MR3660496
- Hrdina, J., Návrat, A., Vašík, P., Matoušek, R., 10.1007/s00006-016-0693-7, Adv. Appl. Clifford Algebr. 27 (2017), 633-645. MR3619388DOI10.1007/s00006-016-0693-7
- Hrdina, J., Návrat, A., Vašík, P., Matoušek, R., 10.1007/s00006-016-0693-7, Adv. Appl. Clifford Algebr. 27 (2017), 633-645. MR3619387DOI10.1007/s00006-016-0693-7
- Ishikawa, M., 10.1016/s1474-6670(17)31339-3, In: Proc. IFAC NOLCOS, IFAC Nonlinear Control Systems, Stuttgart 2004, pp. 1169-1174. DOI10.1016/s1474-6670(17)31339-3
- Ishikawa, M., Fukiro, T., 10.1109/iros.2009.5354831, In: Proc. IEEE/RSJ IROS 2009, pp. 1314-1319. DOI10.1109/iros.2009.5354831
- Ishikawa, M., Minami, Y., Sugie, T., 10.1109/tmech.2008.2011985, IEEE/ASME Trans. Mechatron. 15 (2010), 9-16. DOI10.1109/tmech.2008.2011985
- Jakubiak, J., Tchon, K., Janiak, M., 10.1007/978-3-7091-0277-0_18, In: ROMANSY 18 Robot Design, Dynamics and Control: Proc. Eighteenth CISM-IFToMM Symposium (V. P. Castelli and W. Schiehlen, eds.), Springer, Vienna 2010, pp. 159-166. MR3236885DOI10.1007/978-3-7091-0277-0_18
- Jarzebowska, E., 10.1155/2007/31267, Math. Problems Engrg. 2007 (2007), 1-20. MR2417212DOI10.1155/2007/31267
- Jean, F., 10.1007/978-3-319-08690-3, Springer International Publishing, New York 2014. MR3308372DOI10.1007/978-3-319-08690-3
- Liljebäck, P., Pettersen, K. Y., Stavdahl, Ø., Gravdahl, J. T., 10.1007/978-1-4471-2996-7, Springer-Verlag, London 2013. DOI10.1007/978-1-4471-2996-7
- Meiying, O., Shengwei, G., Xianbing, W., Kexiu, D., 10.14736/kyb-2015-6-1049, Kybernetika 51 (2015), 1049-1067. MR3453685DOI10.14736/kyb-2015-6-1049
- Murray, R. M., Zexiang, L., Sastry, S. S., A Mathematical Introduction to Robotic Manipulation., CRC Press, Boca Raton 1994. MR1300410
- Návrat, A., Matoušek, R., 10.1007/978-3-319-19824-8_31, Mendel 2015: Recent Advances in Computer Science 378 (2015), 375-385. DOI10.1007/978-3-319-19824-8_31
- Návrat, A., Vašík, P, On geometric control models of a robotic snake., Note di Matematica 37 (2017), 119-129. MR3660498
- Pietrowska, Z., Tchon, K., 10.1007/s10846-013-9858-y, J. Intelligent Robotic Systems 75 (2014), 17-28. DOI10.1007/s10846-013-9858-y
- Selig, J. M., 10.1017/s0263574706262805, Springer, New York 2004. MR2250553DOI10.1017/s0263574706262805
- Transeth, A. A., Pettersen, K. Y., Liljebäck, P., 10.1017/s0263574709005414, Robotica 27 (2009), 999-1015. DOI10.1017/s0263574709005414
- Venditelli, M., Oriolo, G., Jean, F., Laumond, J. P., 10.1109/tac.2003.822872, IEEE Trans. Automat. Control 49 (2004), 261-266. MR2034349DOI10.1109/tac.2003.822872
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.