Finite-time tracking control of multiple nonholonomic mobile robots with external disturbances
Meiying Ou; Shengwei Gu; Xianbing Wang; Kexiu Dong
Kybernetika (2015)
- Volume: 51, Issue: 6, page 1049-1067
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topOu, Meiying, et al. "Finite-time tracking control of multiple nonholonomic mobile robots with external disturbances." Kybernetika 51.6 (2015): 1049-1067. <http://eudml.org/doc/276173>.
@article{Ou2015,
abstract = {This paper investigates finite-time tracking control problem of multiple nonholonomic mobile robots in dynamic model with external disturbances, where a kind of finite-time disturbance observer (FTDO) is introduced to estimate the external disturbances for each mobile robot. First of all, the resulting tracking error dynamic is transformed into two subsystems, i. e., a third-order subsystem and a second-order subsystem for each mobile robot. Then, the two subsystem are discussed respectively, continuous finite-time disturbance observers and finite-time tracking control laws are designed for each mobile robot. Rigorous proof shows that each mobile robot can track the desired trajectory in finite time. Simulation example illustrates the effectiveness of our method.},
author = {Ou, Meiying, Gu, Shengwei, Wang, Xianbing, Dong, Kexiu},
journal = {Kybernetika},
keywords = {finite-time tracking control; finite-time disturbance observer; external disturbances; nonholonomic mobile robot; dynamic model},
language = {eng},
number = {6},
pages = {1049-1067},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Finite-time tracking control of multiple nonholonomic mobile robots with external disturbances},
url = {http://eudml.org/doc/276173},
volume = {51},
year = {2015},
}
TY - JOUR
AU - Ou, Meiying
AU - Gu, Shengwei
AU - Wang, Xianbing
AU - Dong, Kexiu
TI - Finite-time tracking control of multiple nonholonomic mobile robots with external disturbances
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 6
SP - 1049
EP - 1067
AB - This paper investigates finite-time tracking control problem of multiple nonholonomic mobile robots in dynamic model with external disturbances, where a kind of finite-time disturbance observer (FTDO) is introduced to estimate the external disturbances for each mobile robot. First of all, the resulting tracking error dynamic is transformed into two subsystems, i. e., a third-order subsystem and a second-order subsystem for each mobile robot. Then, the two subsystem are discussed respectively, continuous finite-time disturbance observers and finite-time tracking control laws are designed for each mobile robot. Rigorous proof shows that each mobile robot can track the desired trajectory in finite time. Simulation example illustrates the effectiveness of our method.
LA - eng
KW - finite-time tracking control; finite-time disturbance observer; external disturbances; nonholonomic mobile robot; dynamic model
UR - http://eudml.org/doc/276173
ER -
References
top- Bhat, S., Bernstein, D., 10.1137/s0363012997321358, SIAM J. Control Optim. 38 (2000), 751-766. Zbl0945.34039MR1756893DOI10.1137/s0363012997321358
- Chen, W., 10.1109/tmech.2004.839034, IEEE/ASME Trans. Mechatronics 9 (2004), 706-710. DOI10.1109/tmech.2004.839034
- Chen, W., Ballance, D., Gawthrop, P., O'Reilly, J., 10.1109/41.857974, IEEE Trans. Ind. Electron. 47 (2000), 932-938. DOI10.1109/41.857974
- Ding, S., Wang, J., Zheng, W., 10.1109/tie.2015.2448064, IEEE Trans. Ind. Electron. 62 (2015), 5899-5909. DOI10.1109/tie.2015.2448064
- Desai, J., Ostrowski, J., Kumar, V., 10.1109/70.976023, IEEE Trans. Robot. Automat. Control 17 (2001), 905-908. DOI10.1109/70.976023
- Dong, W., 10.1007/s10846-010-9451-6, J. Intel. Robot. Syst.: Theory and Appl. 62 (2011), 547-565. Zbl1245.93085DOI10.1007/s10846-010-9451-6
- Dong, W., Farrell, J., 10.1109/tac.2008.925852, IEEE Trans. Automat. Control 53 (2008), 1434-1448. MR2451233DOI10.1109/tac.2008.925852
- Dong, W., Farrell, J., 10.1016/j.automatica.2008.09.015, Automatica 45 (2009), 706-710. Zbl1166.93302MR2527253DOI10.1016/j.automatica.2008.09.015
- Du, H., He, Y., Cheng, Y., Finite-time cooperative tracking control for a class of second-order nonlinear multi-agent systems., Kybernetika 49 (2013), 507-523. Zbl1274.93008MR3117911
- Guo, L., Chen, W., 10.1002/rnc.978, Int. J. Robust Nonlin. Control 15 (2005), 109-125. Zbl1078.93030MR2117031DOI10.1002/rnc.978
- Hardy, G., Littlewood, J., Polya, G., Inequalities., Cambridge University Press, Cambridge 1952. Zbl0634.26008MR0046395
- Ou, M., Du, H., Li, S., 10.1002/rnc.2880, Int. J. Robust Nonlin. Control 24 (2014), 140-165. Zbl1278.93173MR3149291DOI10.1002/rnc.2880
- Jiang, Z., Nijmeijer, H., Tracking control of mobile robots: a case study in backstepping., Automatica 33 (1997), 1393-1399. Zbl0882.93057MR1467813
- Justh, E., Krishnaprasad, P., 10.1016/j.sysconle.2003.10.004, Syst. Control Lett. 52 (2004), 25-38. MR2050451DOI10.1016/j.sysconle.2003.10.004
- Li, S., Du, H., Lin, X., 10.1016/j.automatica.2011.02.045, Automatica 47 (2011), 1706-1712. Zbl1226.93014MR2886774DOI10.1016/j.automatica.2011.02.045
- Lin, Z., Francis, B., Maggiore, M., 10.1109/tac.2004.841121, IEEE Trans. Automat. Control 50 (2005), 121-127. MR2110819DOI10.1109/tac.2004.841121
- Jadbabaie, A., Lin, J., Morse, A., 10.1109/tac.2003.812781, IEEE Trans. Automat. Control 48 (2003), 988-1001. MR1986266DOI10.1109/tac.2003.812781
- Kanayama, Y., Kimura, Y., Miyazaki, F., Noguchi, T., A stable tracking control method for an autonomous mobile robot., In: Proc. IEEE Int. Conf. Rob. Autom. (1990), pp. 384-389.
- Levant, A., 10.1080/0020717031000099029, Int. J. Control 76 (2003), 924-941. Zbl1049.93014MR1999375DOI10.1080/0020717031000099029
- Li, S., Ding, S., Li, Q., 10.1080/00207170802342818, Int. J. Control 82 (2009), 822-836. Zbl1165.93328MR2523551DOI10.1080/00207170802342818
- Murray, R., 10.1115/1.2766721, ASME J. Dyn. Syst. Meas. Control 129 (2007), 571-583. DOI10.1115/1.2766721
- Ni, W., Wang, X., Xiong, C., Leader-following consensus of multiple linear systems under switching topologies: an averaging method., Kybernetika 48 (2012), 1194-1210. Zbl1255.93069MR3052881
- Ou, M., Du, H., Li, S., 10.1016/j.jfranklin.2012.08.009, J. Franklin Inst. 49 (2012), 2834-2860. Zbl1264.93158MR2992101DOI10.1016/j.jfranklin.2012.08.009
- Ou, M., Li, S., Wang, C., 10.1002/asjc.773, Asian J. Control 16 (2014), 679-691. MR3216258DOI10.1002/asjc.773
- Ou, M., Sun, H., Li, S., Finite time tracking control of a nonholonomic mobile robot with external disturbances., In: Proc. 31th Chinese Control Conference, Hefei 2012, pp. 853-858. Zbl1265.68291MR3013579
- Ren, W., Beard, R., 10.1109/tac.2005.846556, IEEE Trans. Automat. Control 50 (2005), 655-661. MR2141568DOI10.1109/tac.2005.846556
- Saber, R., Murray, R., 10.1109/tac.2004.834113, IEEE Trans. Automat. Control 49 (2004), 1520-1533. MR2086916DOI10.1109/tac.2004.834113
- Shtessel, Y., Shkolnikov, I., Levant, A., 10.1016/j.automatica.2007.01.008, Automatica 43 (2007), 1470-1476. Zbl1130.93392MR2320533DOI10.1016/j.automatica.2007.01.008
- Vicsek, T., Czirok, A., Jacob, E., Cohen, I., Schochet, O., 10.1103/physrevlett.75.1226, Phys. Rev. Lett. 75 (1995), 1226-1229. DOI10.1103/physrevlett.75.1226
- Wang, J., Qiu, Z., Zhang, G., Finite-time consensus problem for multiple non-holonomic mobile agents., Kybernetika 48 (2012),1180-1193. Zbl1255.93118MR3052880
- Wu, Y., Wang, B., Zong, G., 10.1109/TCSII.2005.852528, IEEE Trans. Circuits Sys. II: Express Briefs 52 (2005), 798-802. DOI10.1109/TCSII.2005.852528
- Yang, J., Li, S., Chen, X., Li, Q., 10.1016/j.powtec.2009.11.010, Powder Technol. 198 (2010), 219-228. DOI10.1016/j.powtec.2009.11.010
- Yu, S., Long, X., 10.1016/j.automatica.2015.02.001, Automatica 54 (2015), 158-165. Zbl1318.93009MR3324518DOI10.1016/j.automatica.2015.02.001
Citations in EuDML Documents
top- Jaroslav Hrdina, Radomil Matoušek, Aleš Návrat, Petr Vašík, Nilpotent approximation of a trident snake robot controlling distribution
- Qixun Lan, Huawei Niu, Yamei Liu, Huafeng Xu, Global output-feedback finite-time stabilization for a class of stochastic nonlinear cascaded systems
- Ou Meiying, Sun Haibin, Zhang Zhenxing, Li Lingchun, Wang Xiang-ao, Fixed-time tracking control for nonholonomic mobile robot
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.