Chance constrained optimal beam design: Convex reformulation and probabilistic robust design
Kybernetika (2018)
- Volume: 54, Issue: 6, page 1201-1217
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topKůdela, Jakub, and Popela, Pavel. "Chance constrained optimal beam design: Convex reformulation and probabilistic robust design." Kybernetika 54.6 (2018): 1201-1217. <http://eudml.org/doc/294449>.
@article{Kůdela2018,
abstract = {In this paper, we are concerned with a civil engineering application of optimization, namely the optimal design of a loaded beam. The developed optimization model includes ODE-type constraints and chance constraints. We use the finite element method (FEM) for the approximation of the ODE constraints. We derive a convex reformulation that transforms the problem into a linear one and find its analytic solution. Afterwards, we impose chance constraints on the stress and the deflection of the beam. These chance constraints are handled by a sampling method (Probabilistic Robust Design).},
author = {Kůdela, Jakub, Popela, Pavel},
journal = {Kybernetika},
keywords = {optimal design; stochastic programming; chance constrained optimization; probabilistic robust design; geometric programming},
language = {eng},
number = {6},
pages = {1201-1217},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Chance constrained optimal beam design: Convex reformulation and probabilistic robust design},
url = {http://eudml.org/doc/294449},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Kůdela, Jakub
AU - Popela, Pavel
TI - Chance constrained optimal beam design: Convex reformulation and probabilistic robust design
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 6
SP - 1201
EP - 1217
AB - In this paper, we are concerned with a civil engineering application of optimization, namely the optimal design of a loaded beam. The developed optimization model includes ODE-type constraints and chance constraints. We use the finite element method (FEM) for the approximation of the ODE constraints. We derive a convex reformulation that transforms the problem into a linear one and find its analytic solution. Afterwards, we impose chance constraints on the stress and the deflection of the beam. These chance constraints are handled by a sampling method (Probabilistic Robust Design).
LA - eng
KW - optimal design; stochastic programming; chance constrained optimization; probabilistic robust design; geometric programming
UR - http://eudml.org/doc/294449
ER -
References
top- Adam, L., Branda, M., 10.1007/s10957-016-0943-9, J. Optim. Theory Appl. 170 (2016), 2, 419-436. MR3527703DOI10.1007/s10957-016-0943-9
- Beck, A. T., Gomes, W. J. S., Lopez, R. H., Miguel, L. F. F., 10.1007/s00158-015-1253-9, Struct. Multidisciplin. Optim. 52 (2015), 3, 479-492. MR3399194DOI10.1007/s00158-015-1253-9
- Ben-Tal, A., Ghaoui, L. El, Nemirovski, A., 10.1515/9781400831050, Princeton University Press, 2009. MR2546839DOI10.1515/9781400831050
- Boyd, S. P., Vandenberghe, L., 10.1017/cbo9780511804441, Cambridge University Press, New York 2004. Zbl1058.90049MR2061575DOI10.1017/cbo9780511804441
- Calafiore, G. C., Campi, M. C., 10.1109/tac.2006.875041, IEEE Trans. Automat. Control 51 (2006), 5, 742-753. MR2232597DOI10.1109/tac.2006.875041
- Campi, M. C., Garatti, S., 10.1007/s10957-010-9754-6, J. Optim. Theory Appl. 148 (2011), 257-280. MR2780563DOI10.1007/s10957-010-9754-6
- Carè, A., Garatti, S., Campi, M. C., 10.1137/130928546, SIAM J. Optim. 25 (2015), 4, 2061-2080. MR3413595DOI10.1137/130928546
- Dupačová, J., Stochastic geometric programming with an application., Kybernetika 46 (2010), 3, 374-386. MR2676074
- Gandomi, A. H., Yang, X.-S., Alavi, A. H., 10.1007/s00366-011-0241-y, Engrg. Comput. 29 (2013), 1, 17-35. DOI10.1007/s00366-011-0241-y
- Grant, M., Boyd, S., 10.1007/978-1-84800-155-8_7, In: Recent Advances in Learning and Control (V. Blondel, S. Boyd and H. Kimura, eds.), Springer-Verlag Limited, Berlin 2008, pp. 95-110. MR2409077DOI10.1007/978-1-84800-155-8_7
- Haslinger, J., Mäkinen, R. A. E., 10.1137/1.9780898718690, SIAM, 2003. MR1969772DOI10.1137/1.9780898718690
- Laníková, I., Štěpánek, P., Šimůnek, P., 10.1260/1369-4332.17.4.495, Advances Structural Engrg. 17 (2014), 4, 495-511. DOI10.1260/1369-4332.17.4.495
- Lepš, M., Šejnoha, M., 10.1016/s0045-7949(03)00215-3, Computers Structures 81 (2003), 1, 1957-1966. DOI10.1016/s0045-7949(03)00215-3
- Luedtke, J., Ahmed, S., Nemhauser, G. L., 10.1007/s10107-008-0247-4, Math. Programm. Ser. A 122 (2010), 247-272. MR2546332DOI10.1007/s10107-008-0247-4
- Marek, P., Brozzetti, J., Gustar, M., 10.1115/1.1451167, TeReCo, Praha 2001. DOI10.1115/1.1451167
- Nemirovski, A., 10.1016/j.ejor.2011.11.006, Europ. J. Oper. Res. 219 (2012), 707-718. MR2898951DOI10.1016/j.ejor.2011.11.006
- Oberg, E., Jones, F. D., Ryffel, H. H., Machinery's Handbook Guide. 29th edition., Industrial Press, 2012.
- Pagnoncelli, B. K., Ahmed, S., Shapiro, A., 10.1007/s10957-009-9523-6, J. Optim. Theory Appl. 142 (2009), 399-416. MR2525799DOI10.1007/s10957-009-9523-6
- Rozvany, G. I. N., (eds.), T. Lewiński, CISM Courses and Lectures: Topology Optimization in Structural and Continuum Mechanics., Springer-Verlag, Wien 2014. MR3183768
- Ruszczynski, A., (eds.), A. Shapiro, Handbooks in Operations Research and Management Science: Stochastic Programming., Elsevier, Amsterdam 2003. MR2051792
- Šabartová, Z., Popela, P., Beam design optimization model with FEM based constraints., Mendel J. Ser. 1 (2012), 422-427.
- Smith, I. M., Griffiths, D. V., Programming the Finite Element Method. Fourth edition., John Wiley and Sons, New York 2004. MR0934925
- Young, W. C., Budynas, R. G., Sadegh, A. M., Roark's Formulas for Stress and Strain. Seventh edition., McGraw-Hill Education, 2002. MR0112352
- Žampachová, E., Popela, P., Mrázek, M., Optimum beam design via stochastic programming., Kybernetika 46 (2010), 3, 571-582. MR2676092
- Zhuang, X., Pan, R., 10.1115/1.4005597, J. Mechan. Design 134 (2012), 2, Article number 021002. DOI10.1115/1.4005597
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.