New extension of the variational McShane integral of vector-valued functions
Mathematica Bohemica (2019)
- Volume: 144, Issue: 2, page 137-148
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topKaliaj, Sokol Bush. "New extension of the variational McShane integral of vector-valued functions." Mathematica Bohemica 144.2 (2019): 137-148. <http://eudml.org/doc/294457>.
@article{Kaliaj2019,
abstract = {We define the Hake-variational McShane integral of Banach space valued functions defined on an open and bounded subset $G$ of $m$-dimensional Euclidean space $\mathbb \{R\}^\{m\}$. It is a “natural” extension of the variational McShane integral (the strong McShane integral) from $m$-dimensional closed non-degenerate intervals to open and bounded subsets of $\mathbb \{R\}^\{m\}$. We will show a theorem that characterizes the Hake-variational McShane integral in terms of the variational McShane integral. This theorem reduces the study of our integral to the study of the variational McShane integral. As an application, a full descriptive characterization of the Hake-variational McShane integral is presented in terms of the cubic derivative.},
author = {Kaliaj, Sokol Bush},
journal = {Mathematica Bohemica},
keywords = {Hake-variational McShane integral; variational McShane integral; Banach space; $m$-dimensional Euclidean space},
language = {eng},
number = {2},
pages = {137-148},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {New extension of the variational McShane integral of vector-valued functions},
url = {http://eudml.org/doc/294457},
volume = {144},
year = {2019},
}
TY - JOUR
AU - Kaliaj, Sokol Bush
TI - New extension of the variational McShane integral of vector-valued functions
JO - Mathematica Bohemica
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 144
IS - 2
SP - 137
EP - 148
AB - We define the Hake-variational McShane integral of Banach space valued functions defined on an open and bounded subset $G$ of $m$-dimensional Euclidean space $\mathbb {R}^{m}$. It is a “natural” extension of the variational McShane integral (the strong McShane integral) from $m$-dimensional closed non-degenerate intervals to open and bounded subsets of $\mathbb {R}^{m}$. We will show a theorem that characterizes the Hake-variational McShane integral in terms of the variational McShane integral. This theorem reduces the study of our integral to the study of the variational McShane integral. As an application, a full descriptive characterization of the Hake-variational McShane integral is presented in terms of the cubic derivative.
LA - eng
KW - Hake-variational McShane integral; variational McShane integral; Banach space; $m$-dimensional Euclidean space
UR - http://eudml.org/doc/294457
ER -
References
top- Piazza, L. Di, 10.1023/A:1013705821657, Czech. Math. J. 51 (2001), 95-110. (2001) Zbl1079.28500MR1814635DOI10.1023/A:1013705821657
- Piazza, L. Di, Musial, K., 10.1215/ijm/1258138268, Ill. J. Math. 45 (2001), 279-289. (2001) Zbl0999.28006MR1849999DOI10.1215/ijm/1258138268
- Folland, G. B., Real Analysis. Modern Techniques and Their Applications, Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts. Wiley, New York (1999). (1999) Zbl0924.28001MR1681462
- Fremlin, D. H., 10.1215/ijm/1255986628, Ill. J. Math. 39 (1995), 39-67. (1995) Zbl0810.28006MR1299648DOI10.1215/ijm/1255986628
- Gordon, R. A., 10.4064/sm-92-1-73-91, Stud. Math. 92 (1989), 73-91. (1989) Zbl0681.28006MR0984851DOI10.4064/sm-92-1-73-91
- Gordon, R. A., 10.1215/ijm/1255988170, Ill. J. Math. 34 (1990), 557-567. (1990) Zbl0685.28003MR1053562DOI10.1215/ijm/1255988170
- Gordon, R. A., 10.1090/gsm/004, Graduate Studies in Mathematics 4. AMS, Providence (1994). (1994) Zbl0807.26004MR1288751DOI10.1090/gsm/004
- Kaliaj, S. B., 10.1007/s00009-018-1067-2, Mediterr. J. Math. 15 (2018), Article ID 22, 16 pages. (2018) Zbl06860542MR3746986DOI10.1007/s00009-018-1067-2
- Kaliaj, S. B., Some remarks about descriptive characterizations of the strong McShane integral, (to appear) in Math. Bohem.
- Kurzweil, J., Schwabik, Š., 10.14321/realanalexch.29.2.0763, Real Anal. Exchange 29 (2003-2004), 763-780. (2003) Zbl1078.28007MR2083811DOI10.14321/realanalexch.29.2.0763
- McShane, E. J., Unifed Integration, Pure and Applied Mathematics 107. Academic Press, Orlando (1983). (1983) Zbl0551.28001MR0740710
- Pfeffer, W. F., 10.1017/CBO9780511574764, Cambridge Tracts in Mathematics 140. Cambridge University Press, Cambridge (2001). (2001) Zbl0980.26008MR1816996DOI10.1017/CBO9780511574764
- Schwabik, Š., Guoju, Y., 10.1142/9789812703286, Series in Real Analysis 10. World Scientific, Hackensack (2005). (2005) Zbl1088.28008MR2167754DOI10.1142/9789812703286
- Skvortsov, V. A., Solodov, A. P., 10.2307/44152997, Real Anal. Exch. 24 (1999), 799-805. (1999) Zbl0967.28007MR1704751DOI10.2307/44152997
- Thomson, B. S., 10.1090/memo/0452, Mem. Am. Math. Soc. 93 (1991), 96 pages. (1991) Zbl0734.26003MR1078198DOI10.1090/memo/0452
- Thomson, B. S., /10.1016/B978-044450263-6/50006-3, Handbook of Measure Theory. Vol. I. and II. North-Holland, Amsterdam (2002), 179-247 E. Pap. (2002) Zbl1028.28001MR1954615DOI/10.1016/B978-044450263-6/50006-3
- Wu, C., Xiaobo, Y., A Riemann-type definition of the Bochner integral, J. Math. Study 27 (1994), 32-36. (1994) Zbl0947.28010MR1318255
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.