Some remarks on descriptive characterizations of the strong McShane integral
Mathematica Bohemica (2019)
- Volume: 144, Issue: 4, page 339-355
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topKaliaj, Sokol Bush. "Some remarks on descriptive characterizations of the strong McShane integral." Mathematica Bohemica 144.4 (2019): 339-355. <http://eudml.org/doc/294701>.
@article{Kaliaj2019,
abstract = {We present the full descriptive characterizations of the strong McShane integral (or the variational McShane integral) of a Banach space valued function $f\colon W \rightarrow X$ defined on a non-degenerate closed subinterval $W$ of $\mathbb \{R\}^\{m\}$ in terms of strong absolute continuity or, equivalently, in terms of McShane variational measure $V_\{\mathcal \{M\}\} F$ generated by the primitive $F\colon \mathcal \{I\}_\{W\} \rightarrow X$ of $f$, where $\mathcal \{I\}_\{W\}$ is the family of all closed non-degenerate subintervals of $W$.},
author = {Kaliaj, Sokol Bush},
journal = {Mathematica Bohemica},
keywords = {strong McShane integral; McShane variational measure; Banach space; $m$-dimensional Euclidean space; compact non-degenerate $m$-dimensional interval},
language = {eng},
number = {4},
pages = {339-355},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some remarks on descriptive characterizations of the strong McShane integral},
url = {http://eudml.org/doc/294701},
volume = {144},
year = {2019},
}
TY - JOUR
AU - Kaliaj, Sokol Bush
TI - Some remarks on descriptive characterizations of the strong McShane integral
JO - Mathematica Bohemica
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 144
IS - 4
SP - 339
EP - 355
AB - We present the full descriptive characterizations of the strong McShane integral (or the variational McShane integral) of a Banach space valued function $f\colon W \rightarrow X$ defined on a non-degenerate closed subinterval $W$ of $\mathbb {R}^{m}$ in terms of strong absolute continuity or, equivalently, in terms of McShane variational measure $V_{\mathcal {M}} F$ generated by the primitive $F\colon \mathcal {I}_{W} \rightarrow X$ of $f$, where $\mathcal {I}_{W}$ is the family of all closed non-degenerate subintervals of $W$.
LA - eng
KW - strong McShane integral; McShane variational measure; Banach space; $m$-dimensional Euclidean space; compact non-degenerate $m$-dimensional interval
UR - http://eudml.org/doc/294701
ER -
References
top- Candeloro, D., Piazza, L. Di, Musiał, K., Sambucini, A. R., 10.1016/j.jmaa.2016.04.009, J. Math. Anal. Appl. 441 (2016), 293-308. (2016) Zbl1339.28016MR3488058DOI10.1016/j.jmaa.2016.04.009
- Candeloro, D., Piazza, L. Di, Musiał, K., Sambucini, A. R., 10.1007/s10231-017-0674-z, Ann. Mat. Pura Appl. (4) 197 (2018), 171-183. (2018) Zbl06837507MR3747527DOI10.1007/s10231-017-0674-z
- J. Diestel, J. J. Uhl, Jr., Vector Measures, Mathematical Surveys 15. AMS, Providence (1977). (1977) Zbl0369.46039MR0453964
- Piazza, L. Di, 10.1023/A:1013705821657, Czech. Math. J. 51 (2001), 95-110. (2001) Zbl1079.28500MR1814635DOI10.1023/A:1013705821657
- Piazza, L. Di, Musiał, K., 10.1215/ijm/1258138268, Ill. J. Math. 45 (2001), 279-289. (2001) Zbl0999.28006MR1849999DOI10.1215/ijm/1258138268
- Dunford, N., Schwartz, J. T., Linear Operators I. General Theory, Pure and Applied Mathematics. Vol. 7. Interscience Publishers, New York (1958). (1958) Zbl0084.10402MR0117523
- Folland, G. B., Real Analysis. Modern Techniques and Their Applications, Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts. Wiley, New York (1999). (1999) Zbl0924.28001MR1681462
- Fremlin, D. H., 10.1215/ijm/1255986628, Ill. J. Math. 39 (1995), 39-67. (1995) Zbl0810.28006MR1299648DOI10.1215/ijm/1255986628
- Gordon, R. A., 10.4064/sm-92-1-73-91, Stud. Math. 92 (1989), 73-91. (1989) Zbl0681.28006MR0984851DOI10.4064/sm-92-1-73-91
- Gordon, R. A., 10.1215/ijm/1255988170, Ill. J. Math. 34 (1990), 557-567. (1990) Zbl0685.28003MR1053562DOI10.1215/ijm/1255988170
- Gordon, R. A., 10.1090/gsm/004, Graduate Studies in Mathematics 4. AMS, Providence (1994). (1994) Zbl0807.26004MR1288751DOI10.1090/gsm/004
- Kaliaj, S. B., 10.14321/realanalexch.39.1.0227, Real Anal. Exch. 39 (2014), 227-238. (2014) Zbl1298.28025MR3261908DOI10.14321/realanalexch.39.1.0227
- Lee, T.-Y., 10.21136/MB.2004.134144, Math. Bohem. 129 (2004), 305-312. (2004) Zbl1080.26006MR2092716DOI10.21136/MB.2004.134144
- Lee, T. Y., 10.1142/7933, Series in Real Analysis 12. World Scientific, Hackensack (2011). (2011) Zbl1246.26002MR2789724DOI10.1142/7933
- Marraffa, V., 10.1216/RMJ-2009-39-6-1993, Rocky Mt. J. Math. 39 (2009), 1993-2013. (2009) Zbl1187.28019MR2575890DOI10.1216/RMJ-2009-39-6-1993
- McShane, E. J., Unified Integration, Pure and Applied Mathematics 107. Academic Press, Orlando (Harcourt Brace Jovanovich, Publishers) (1983). (1983) Zbl0551.28001MR0740710
- Musiał, K., Vitali and Lebesgue convergence theorems for Pettis integral in locally convex spaces, Atti Semin. Mat. Fis. Univ. Modena 35 (1987), 159-165. (1987) Zbl0636.28005MR0922998
- Musiał, K., Topics in the theory of Pettis integration, Rend. Ist. Math. Univ. Trieste 23 (1991), 177-262. (1991) Zbl0798.46042MR1248654
- Musiał, K., 10.1016/B978-044450263-6/50013-0, Handbook of Measure Theory. Vol. I. and II. North-Holland, Amsterdam (2002), 531-586 E. Pap. (2002) Zbl1043.28010MR1954622DOI10.1016/B978-044450263-6/50013-0
- Pfeffer, W. F., 10.1017/CBO9780511574764, Cambridge Tracts in Mathematics 140. Cambridge University Press, Cambridge (2001). (2001) Zbl0980.26008MR1816996DOI10.1017/CBO9780511574764
- Schwabik, Š., Ye, G., 10.1142/9789812703286, Series in Real Analysis 10. World Scientific, Hackensack (2005). (2005) Zbl1088.28008MR2167754DOI10.1142/9789812703286
- Talagrand, M., 10.1090/memo/0307, Mem. Am. Math. Soc. 51 (1984), 224 pages. (1984) Zbl0582.46049MR0756174DOI10.1090/memo/0307
- Thomson, B. S., 10.1090/memo/0452, Mem. Am. Math. Soc. 452 (1991), 96 pages. (1991) Zbl0734.26003MR1078198DOI10.1090/memo/0452
- Thomson, B. S., 10.1016/B978-044450263-6/50006-3, Handbook of Measure Theory. Volume I. and II. North-Holland, Amsterdam (2002), 179-247 E. Pap. (2002) Zbl1028.28001MR1954615DOI10.1016/B978-044450263-6/50006-3
- Wu, C., Yao, X., A Riemann-type definition of the Bochner integral, J. Math. Study 27 (1994), 32-36. (1994) Zbl0947.28010MR1318255
- Ye, G., 10.1016/j.jmaa.2006.08.020, J. Math. Anal. Appl. 330 (2007), 753-765. (2007) Zbl1160.46028MR2308405DOI10.1016/j.jmaa.2006.08.020
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.