Δ -weak character amenability of certain Banach algebras

Hamid Sadeghi

Archivum Mathematicum (2019)

  • Volume: 055, Issue: 4, page 239-247
  • ISSN: 0044-8753

Abstract

top
In this paper we investigate Δ -weak character amenability of certain Banach algebras such as projective tensor product A ^ B and Lau product A × θ B , where A and B are two arbitrary Banach algebras and θ Δ ( B ) , the character space of B . We also investigate Δ -weak character amenability of abstract Segal algebras and module extension Banach algebras.

How to cite

top

Sadeghi, Hamid. "$\Delta $-weak character amenability of certain Banach algebras." Archivum Mathematicum 055.4 (2019): 239-247. <http://eudml.org/doc/294462>.

@article{Sadeghi2019,
abstract = {In this paper we investigate $\Delta $-weak character amenability of certain Banach algebras such as projective tensor product $A\widehat\{\otimes \}B$ and Lau product $A\times _\{\theta \}B$, where $A$ and $B$ are two arbitrary Banach algebras and $\theta \in \Delta (B)$, the character space of $B$. We also investigate $\Delta $-weak character amenability of abstract Segal algebras and module extension Banach algebras.},
author = {Sadeghi, Hamid},
journal = {Archivum Mathematicum},
keywords = {Banach algebra; $\Delta $-weak approximate identit; $\Delta $-weak character amenability},
language = {eng},
number = {4},
pages = {239-247},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {$\Delta $-weak character amenability of certain Banach algebras},
url = {http://eudml.org/doc/294462},
volume = {055},
year = {2019},
}

TY - JOUR
AU - Sadeghi, Hamid
TI - $\Delta $-weak character amenability of certain Banach algebras
JO - Archivum Mathematicum
PY - 2019
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 055
IS - 4
SP - 239
EP - 247
AB - In this paper we investigate $\Delta $-weak character amenability of certain Banach algebras such as projective tensor product $A\widehat{\otimes }B$ and Lau product $A\times _{\theta }B$, where $A$ and $B$ are two arbitrary Banach algebras and $\theta \in \Delta (B)$, the character space of $B$. We also investigate $\Delta $-weak character amenability of abstract Segal algebras and module extension Banach algebras.
LA - eng
KW - Banach algebra; $\Delta $-weak approximate identit; $\Delta $-weak character amenability
UR - http://eudml.org/doc/294462
ER -

References

top
  1. Alaghmandan, M., Nasr-Isfahani, R., Nemati, M., 10.1017/S0004972710000286, Bull. Austral. Math. Soc. 82 (2010), 274–281. (2010) MR2685151DOI10.1017/S0004972710000286
  2. Burnham, J.T., 10.1090/S0002-9939-1972-0295078-5, Proc. Amer. Math. Soc. 32 (1972), 551–555. (1972) MR0295078DOI10.1090/S0002-9939-1972-0295078-5
  3. Hu, Z., Sangani Monfared, M., Traynor, T., 10.4064/sm193-1-3, Studia Math. 193 (209), 53–78. (209) MR2506414DOI10.4064/sm193-1-3
  4. Jones, C.A., Lahr, C.D., 10.2140/pjm.1977.72.99, Pacific J. Math. 72 (1977), 99–104. (1977) MR0447972DOI10.2140/pjm.1977.72.99
  5. Kaniuth, E., A course in commutative Banach algebras, Graduate Texts in Mmathematics, Springer Verlag, 2009. (2009) MR2458901
  6. Kaniuth, E., Lau, A.T., Pym, J., 10.1017/S0305004107000874, Math. Proc. Cambridge Philos. Soc. 144 (2008), 85–96. (2008) MR2388235DOI10.1017/S0305004107000874
  7. Laali, J., Fozoun, M., On Δ -weak φ -amenability of Banach algebras, Politehn. Univ. Bucharest Sci. Bull. Ser. A, Appl. Math. Phys. 77 (2015), 165–176. (2015) MR3452543
  8. Lau, A.T., 10.4064/fm-118-3-161-175, Fund. Math. 118 (1983), 161–175. (1983) Zbl0545.46051MR0736276DOI10.4064/fm-118-3-161-175
  9. Monfared, M.S., 10.4064/sm178-3-4, Studia Math. 178 (2007), 277–294. (2007) MR2289357DOI10.4064/sm178-3-4
  10. Monfared, M.S., 10.1017/S0305004108001126, Math. Proc. Cambridge Philos. Soc. 144 (2008), 697–706. (2008) MR2418712DOI10.1017/S0305004108001126
  11. Nasr-Isfahani, R., Nemati, M., 10.1017/S0004972711002620, Bull. Aust. Math. Soc. 84 (2011), 372–386. (2011) MR2851957DOI10.1017/S0004972711002620
  12. Samea, H., 10.1017/S0004972708001329, Bull. Aust. Math. Soc. 79 (2009), 319–325. (2009) MR2496936DOI10.1017/S0004972708001329

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.