-weak character amenability of certain Banach algebras
Archivum Mathematicum (2019)
- Volume: 055, Issue: 4, page 239-247
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topSadeghi, Hamid. "$\Delta $-weak character amenability of certain Banach algebras." Archivum Mathematicum 055.4 (2019): 239-247. <http://eudml.org/doc/294462>.
@article{Sadeghi2019,
abstract = {In this paper we investigate $\Delta $-weak character amenability of certain Banach algebras such as projective tensor product $A\widehat\{\otimes \}B$ and Lau product $A\times _\{\theta \}B$, where $A$ and $B$ are two arbitrary Banach algebras and $\theta \in \Delta (B)$, the character space of $B$. We also investigate $\Delta $-weak character amenability of abstract Segal algebras and module extension Banach algebras.},
author = {Sadeghi, Hamid},
journal = {Archivum Mathematicum},
keywords = {Banach algebra; $\Delta $-weak approximate identit; $\Delta $-weak character amenability},
language = {eng},
number = {4},
pages = {239-247},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {$\Delta $-weak character amenability of certain Banach algebras},
url = {http://eudml.org/doc/294462},
volume = {055},
year = {2019},
}
TY - JOUR
AU - Sadeghi, Hamid
TI - $\Delta $-weak character amenability of certain Banach algebras
JO - Archivum Mathematicum
PY - 2019
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 055
IS - 4
SP - 239
EP - 247
AB - In this paper we investigate $\Delta $-weak character amenability of certain Banach algebras such as projective tensor product $A\widehat{\otimes }B$ and Lau product $A\times _{\theta }B$, where $A$ and $B$ are two arbitrary Banach algebras and $\theta \in \Delta (B)$, the character space of $B$. We also investigate $\Delta $-weak character amenability of abstract Segal algebras and module extension Banach algebras.
LA - eng
KW - Banach algebra; $\Delta $-weak approximate identit; $\Delta $-weak character amenability
UR - http://eudml.org/doc/294462
ER -
References
top- Alaghmandan, M., Nasr-Isfahani, R., Nemati, M., 10.1017/S0004972710000286, Bull. Austral. Math. Soc. 82 (2010), 274–281. (2010) MR2685151DOI10.1017/S0004972710000286
- Burnham, J.T., 10.1090/S0002-9939-1972-0295078-5, Proc. Amer. Math. Soc. 32 (1972), 551–555. (1972) MR0295078DOI10.1090/S0002-9939-1972-0295078-5
- Hu, Z., Sangani Monfared, M., Traynor, T., 10.4064/sm193-1-3, Studia Math. 193 (209), 53–78. (209) MR2506414DOI10.4064/sm193-1-3
- Jones, C.A., Lahr, C.D., 10.2140/pjm.1977.72.99, Pacific J. Math. 72 (1977), 99–104. (1977) MR0447972DOI10.2140/pjm.1977.72.99
- Kaniuth, E., A course in commutative Banach algebras, Graduate Texts in Mmathematics, Springer Verlag, 2009. (2009) MR2458901
- Kaniuth, E., Lau, A.T., Pym, J., 10.1017/S0305004107000874, Math. Proc. Cambridge Philos. Soc. 144 (2008), 85–96. (2008) MR2388235DOI10.1017/S0305004107000874
- Laali, J., Fozoun, M., On -weak -amenability of Banach algebras, Politehn. Univ. Bucharest Sci. Bull. Ser. A, Appl. Math. Phys. 77 (2015), 165–176. (2015) MR3452543
- Lau, A.T., 10.4064/fm-118-3-161-175, Fund. Math. 118 (1983), 161–175. (1983) Zbl0545.46051MR0736276DOI10.4064/fm-118-3-161-175
- Monfared, M.S., 10.4064/sm178-3-4, Studia Math. 178 (2007), 277–294. (2007) MR2289357DOI10.4064/sm178-3-4
- Monfared, M.S., 10.1017/S0305004108001126, Math. Proc. Cambridge Philos. Soc. 144 (2008), 697–706. (2008) MR2418712DOI10.1017/S0305004108001126
- Nasr-Isfahani, R., Nemati, M., 10.1017/S0004972711002620, Bull. Aust. Math. Soc. 84 (2011), 372–386. (2011) MR2851957DOI10.1017/S0004972711002620
- Samea, H., 10.1017/S0004972708001329, Bull. Aust. Math. Soc. 79 (2009), 319–325. (2009) MR2496936DOI10.1017/S0004972708001329
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.